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4.10.1 Introduction

The year 2011 marked the one hundredth anniversary of what

may be the first real geochronology paper, published by Arthur

Holmes, entitled “The Association of Lead with Uranium in

Rock-Minerals and Its Application to the Measurement of

Geological Time” (Holmes, 1911). Holmes’ early work was

surprisingly accurate, even though it was carried out prior to

the discovery of isotopes (Soddy, 1913) and restricted to

whole-rock geochemical analyses. This and complementary

efforts examining U decay and utilizing U–Pb chemical geo-

chronology (e.g., Barrell, 1917; Bateman, 1910; Boltwood,

1907; Holmes and Lawson, 1927) laid the foundation for

what was to become one of the most important isotopic dating

methods, capable of measuring the timescales of events from

the early solar system �4.57 Ga into the Pleistocene.

We now know that the element lead has four naturally

occurring stable isotopes, 204Pb, 206Pb, 207Pb, and 208Pb, of

which the latter three have a radiogenic component produced

through the independent decay of 238U, 235U, and 232Th,
atise on Geochemistry 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975
respectively. The abundance of high-U minerals in most rock

types, as well as the resistance of many of these minerals to

chemical and physical weathering, contributes to the popular-

ity and prolificacy of the U–Pb system. Though zircon is by far

the most commonly utilized mineral for U–Pb dating

(Hanchar and Hoskin, 2003), monazite, apatite, xenotime,

titanite, rutile, baddeleyite, allanite, and perovskite are also

commonly dated and provide a spectrum of geochronologic

and thermochronologic applications in igneous, metamor-

phic, hydrothermal, and epithermal systems (Corfu, 1988;

Corfu et al., 1994; Crowley et al., 2009; Gregory et al., 2007;

Hawkins and Bowring, 1999; Heaman, 1989; Heaman and

LeCheminant, 1993; Mezger et al., 1991; Nemchin and

Pidgeon, 1999; Oberli et al., 2004; Parrish, 1990; Rasmussen

et al., 2005, 2006; Rubatto, 2002; Schaltegger, 2007; Schoene

and Bowring, 2006; Storey et al., 2007; Verts et al., 1996; von

Blanckenburg, 1992). Combined with whole-rock partial

dissolution techniques of increasing sophistication (Amelin

et al., 2009; Connelly and Bizzarro, 2009; Connelly et al.,

2008; Wadhwa et al., 2009), the U–Pb system has provided
-7.00310-7 341
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crucial time constraints for the formation of the solar system,

the calibration of the geologic timescale, the rates of tecto-

nothermal processes in the lithosphere, and the reconstruction

of paleogeography and supercontinent cycles.

The amount of material in a given analysis has continually

decreased and the precision of analyses has increased since mass

spectrometers were first applied to U–Pb geochronology in the

1960s. The last decade has seen an explosion of U–Pb data in the

literature (Figure 1), in part because of the ease of dating high-U

minerals in situ through the application of laser ablation

methods to geochronology. However, more time-intensive

high-precision U–Pb geochronology has remained the standard

to which all other geochronologic methods are compared. An

increasing number of other radioisotope decay constants are

calibrateddirectly against theUdecay constants through geochro-

nologic methods (Nebel et al., 2011; Renne et al., 2010; Scherer

et al., 2001; Selby et al., 2007), and the timescales of early solar

systemdifferentiation based on the decay of extinct radionuclides

are connected to the absolute U–Pb timescale (Kita et al., 2005;

Wadhwa et al., 2009). This is in part because the U decay

constants are the most precisely determined among all geochro-

nologic decay schemes (Begemann et al., 2001; Jaffey et al.,

1971), but also because their accuracy is cross-calibrated with

one another through high-precision geochronology of closed-

system minerals (Mattinson, 2000, 2010; Schoene et al., 2006).

The benefit of the dual U decay thus goes further to provide an

internal check for closed-system behavior over long timescales,

cross-checking the accuracy ofmany age determinations and also

yielding information on multiple geologic events from single

datasets (Tera andWasserburg, 1972a; Wetherill, 1956).

This chapter focuses on modern U–Th–Pb geochronology

of relatively high-U–Th minerals in high-temperature systems.

It does not adequately cover exciting related fields of geochro-

nology, such as U-series dating, for which the reader is referred

elsewhere (e.g., Bourdon et al., 2003; Chapters 4.5 and 4.15,

and references therein). This chapter also does not describe in

much detail the geochronology of low-U materials (e.g., car-

bonates; Rasbury and Cole, 2009) or the field of Pb isotopes (see

summary in Faure and Mensing, 2005), though the principles
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discussed here are easily extended to those fields. This chapter

outlines the decay schemes and geochemistry of parent and

daughter products (Section 4.10.2), summarizes the most pop-

ular data visualization techniques and ways to interpret such

data (Sections 4.10.2 and 4.10.3), describes the three analytical

methods used to measure parent and daughter isotope ratios

(Section 4.10.4), discusses the controls on the precision and

accuracy of the method (Section 4.10.5), and finally illustrates

a few of the most exciting modern applications of U-Th-Pb

geochronology to problems in the earth sciences (Section

4.10.6). Though not nearly comprehensive, this chapter is

intended to give the reader a basic understanding of the U–

Th–Pb system and provide the tools to delve deeper into the

literature with an appreciation for the complexity and richness

of the method.
4.10.2 Decay of U and Th to Pb

4.10.2.1 Decay Mechanisms

The power of U–Th–Pb geochronology is largely drawn from

the decay of multiple parent isotopes to different stable isotopes

of Pb, each with different half-lives (Figures 2 and 3(a)). None

of the parent isotopes decays directly to Pb, but instead follows a

sequence of alpha and beta decays (which entails the ejection of

an alpha or beta particle, respectively, from the nucleus) that

create a series of intermediate daughter isotopes, and always

lead to the same stable isotope of Pb (Bateman, 1910). The

decay chains are summarized in Figure 2, with estimated

decay constants and half-lives of the parent isotopes illustrated

(see also Dickin, 2005; Faure andMensing, 2005). The half-lives

of each intermediate daughter are far shorter than that of the

parent isotope; half-lives for intermediate daughter isotopes are

given in Figure 2 if greater than 10 years. To understand the

effects of these complicated decay chains on U–Th–Pb geochro-

nology, wemust introduce the concept of secular equilibrium. A

decay chain is in secular equilibrium when the product of the

abundance of an isotope and its decay constant are equal among

all intermediate daughter products and the parent isotope:
tion year
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N1l1 ¼ N2l2 ¼ N3l3 ¼ . . . [1]

N1½ � ¼ N2½ � ¼ N3½ � . . . [2]

where N1 is the moles of parent isotope 1 and l1 is its decay

constant. Equation [2] rewrites this in the commonnomenclature

for activity of a given isotope (denoted by the square brackets),

which describes its decay rate. In a closed system, any decay chain

will reach secular equilibrium in a time proportional to the

longest half-life of the intermediate daughter product. The system

will remain in secular equilibrium until one or more of the iso-

topes in the chain is fractionated from the others, for instance by

chemical partitioning in a magmatic system or low-temperature

fractionation during chemical weathering. Two important impli-

cations arise from this formulation: (1) if a system is in secular

equilibrium, one atom of 206Pb is created for every atom of 238U

that decays, which is an implicit assumption when using the

simplified dating equations employed in geochronology (see

Section 4.10.2.2); and (2) if secular equilibrium is disturbed

during crystallization or partial melting, the apparent age calcu-

lated by a geochronologist will be jeopardized – but only if the

half-life of the isotope that is fractionated is significantly long. For

example, even if a magma is in secular equilibrium, it is unlikely

that the noble gas radon (Rn) is partitioned into zircon during

crystallization. In secular equilibrium, there is one atom of 222Rn

for every 430 billion atoms of 238U. Exclusion of all 222Rn there-

fore will result in one fewer 206Pb atom for every 430 billion

parent atoms, or a calculated age that is too young by about

1 ppt, which is insignificant compared to precision on a calcu-

lated date, which is at best�0.5% (see Section 4.10.4). However,

several intermediate daughter products have sufficiently long

half-lives that they must be considered in U–Pb geochronology,
namely 230Th and 231Pa, and these will be discussed in Section

4.10.3. Other intermediate daughter products are also very im-

portant because they are exploited themselves as geochron-

ometers of young materials. So-called U-series dating methods

have been crucial for informing our understanding of the rates of

magmatic and climatic processes in young systems (<250 ka),

and are discussed in detail elsewhere (e.g., Bourdon et al., 2003;

Chapters 4.5 and 4.15).
4.10.2.2 Age Equations

Treating each of the three decay systems independently permits

the construction of three separate age equations, assuming

secular equilibrium at the time of system closure. Derivation

of the decay equation and isochron equations are given in

Chapter 4.8, which in the U–Th–Pb system leads to the fol-

lowing classic isochron equations:

206Pb
204Pb

� �
¼

206Pb
204Pb

� �
0

þ
238U
204Pb

� �
el238 t � 1
� �

[3]

207Pb
204Pb

� �
¼

207Pb
204Pb

� �
0

þ
235U
204Pb

� �
el235 t � 1
� �

[4]

208Pb
204Pb

� �
¼

208Pb
204Pb

� �
0

þ
232Th
204Pb

� �
el232 t � 1
� �

[5]

where the subscript 0 follows the ratio of the isotopic compo-

sition of Pb when the system closed (e.g., crystallization of a

mineral), t is the time since the system closed, and l238, l235,
and l232 are the decay constants of

238U, 235U, and 232Th. Note

that initial Pb is colloquially called common lead, and denoted

Pbc. Here, Pbc is used as initial Pb plus blank and

Figure&nbsp;2
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contamination Pb (i.e., nonradiogenic Pb introduced during

laboratory work or naturally prior to sampling). (It should be

noted that other nomenclature also exists. For example, some

prefer the term nonradiogenic Pb rather than common Pb, as used

here.) As with isochron equations in other commonly used

dating systems, a stable isotope of the daughter element is

chosen for normalization, which in this case is 204Pb, the

only nonradiogenic isotope of Pb (Figure 3(b)). Normaliza-

tion has several benefits. One is that it removes the systematic

uncertainty of calculated moles of both parent isotope and

daughter product, which is typically large compared to the

precision of the isotopic ratio. In other words, one can
measure 206Pb/204Pb much more precisely than one can

measure the moles of 206Pb, which is a function of the rela-

tively poorly known concentration of the tracer solution or

standard mineral used for the analysis (see Section 4.10.3). A

second benefit is that it allows one to ignore the absolute

concentration of both U and Pb and focus simply on their

ratio, which again can be measured very precisely compared

to the concentrations. Each of eqns [3]–[5] can be used to

calculate a model age if the isotopic composition of initial Pb

at t¼0 is known or if its contribution can be neglected, and if

other sources of Pbc have been accounted for. Alternatively, a

collection of mineral or bulk rock analyses may form a linear

Figure&nbsp;3
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array on an isochron diagram (e.g., 206Pb/204Pb vs.
238U/204Pb), where the slope of the line is equal to elt–1

and the y-intercept is equivalent to the initial isotopic com-

position of Pb; this is the classic isochron approach used in

nearly all geochronologic methods and is shown graphically

in Figure 3(b).

In some mineral systems, as is commonly the case with

zircon and monazite, the contribution of initial lead is negli-

gible compared to the radiogenic component, in which case

eqns [3]–[5] simplify to

206Pb∗

238U

� �
¼ el238 t � 1

� �
[6]

207Pb∗

235U

� �
¼ el235 t � 1

� �
[7]

208Pb∗

232Th

� �
¼ el232 t � 1

� �
[8]

where * stands for radiogenic.

An added benefit of the U–Pb dual decay system is that it

permits a fourth isochron equation to be constructed, which

comes about by dividing eqn [4] by eqn [3]:

207Pb
204Pb

� �
�

207Pb
204Pb

� �
0

206Pb
204Pb

� �
�

206Pb
204Pb

� �
0

¼
235U
238U

� �
el235 t � 1
� �
el238 t � 1ð Þ ¼

207Pb
206Pb

� �∗

[9]

where * refers to the ratio of radiogenic 207Pb/206Pb. This

equation is especially useful as the present-day 235U/238U is

assumed to be a known constant in terrestrial and meteoritic

systems (though see Section 4.10.5), eliminating the need to

measure U. The concentration of Pb can also be ignored.

Equation [9] can be used to calculate an age by linear fitting

in 206Pb/204Pb–207Pb/204Pb space, or if initial Pb is negligible,

then the measured (207Pb/206Pb)* can be used to directly cal-

culate a date. In both cases, the equation must be solved

iteratively; this is commonly called the Pb–Pb date. Thus, by

measuring U and Pb isotopes alone, one can calculate three

isotopic dates, and in a closed system, all three would agree.

Because, as with any dating method, the requirement of

closed-system behavior is often violated, geochronologists

have developed numerous graphical and numerical methods

aimed to test the assumption of closed-system behavior and to

extract additional information on the geologic history of sam-

ples by quantifying open-system behavior recorded by this

system.
4.10.2.3 Visualization of U–Th–Pb Data

Because of the numerous equations that permit calculation of

dates and Pb0 compositions in U–Th–Pb geochronology, sev-

eral popular graphical representations of data are used to dis-

play the numerous variables. While the same information can

be pulled from any of these graphical depictions, different

diagrams have been used as convenient ways of displaying

different types of data.
4.10.2.3.1 2D isochrons
Equations [3]–[5] can be used to create traditional isochron

plots that are used widely in many geochronometric systems,

all of which are interpreted as outlined earlier (Holmes, 1946;

Houtermans, 1946). The U–Pb system is also amenable to 3D

isochrons (Ludwig, 1998; Wendt, 1984; Zheng, 1992), which

simultaneously determine the initial 206Pb/204Pb and
207Pb/204Pb compositions and age for cogenetic samples. A

suite of rocks and/or minerals can be used to calculate a date

on 2D or 3D isochrons if each rock or mineral on the isochron

(1) became a closed system at the same time, (2) has remained

closed since that time, and (3) had the same initial isotopic

composition of Pb. These prerequisites are the same as those

for all other isochron calculations and need to be evaluated

both statistically (Ludwig, 1998; Wendt and Carl, 1991;

York, 1968; York et al., 2004) and using the geology of the

samples measured.

Rearranging eqn [9] allows the construction of a Pb–Pb

isochron diagram in 206Pb/204Pb–207Pb/204Pb space (Holmes,

1946; Houtermans, 1946). The main difference graphically is

that all minerals or rocks that satisfy the isochron criteria start at

the exact same point in 206Pb/204Pb–207Pb/204Pb space and

follow an arc whose radius depends on the U/Pb in the sample

(Armstrong, 1968; Stacey and Kramers, 1975). Samples with

different U/Pb, despite following different paths, will still fall

on a line whose slope can be used to calculate the time since

system closure. Perhaps the most famous Pb–Pb isochron

was calculated by Patterson (1956), who used terrestrial and

meteorite samples to define an isochron whose date of

4.55�0.07 Ga was interpreted as the time at which meteorites

and Earth began evolving separately – in other words, the age of

Earth. As with U–Pb isochrons, Pb–Pb isochrons can yield age

information while avoiding the assumption of an initial Pb

isotopic composition. It is more useful than U–Pb isochrons

in systems where recent open-system behavior is suspected for

U, or if the Umeasurement is difficult (e.g., Barfod et al., 2002;

Chen et al., 2004; Toulkeridis et al., 2010). Modern meteorite

geochronology employs a modification of the Pb–Pb isochron

by plotting 204Pb/206Pb versus 207Pb/206Pb. This approach al-

lows very precise calculation of 207Pb/206Pb*, which is

weighted toward samples that are the least sensitive to Pbc
(Amelin et al., 2009; Baker et al., 2005; Connelly et al., 2008;

Wadhwa et al., 2009).

4.10.2.3.2 The Wetherill concordia plot
Early workers noted the important constraints that the dual

decay of U to Pb could provide for geochronological applica-

tions. Wetherill (1956) introduced the concordia diagram,

which plots 206Pb*/238U versus 207Pb*/235U from the same

analyses. The parametric concordia curve can then be drawn as

the set of solutions to eqns [6] and [7] for equal values of t

(Figure 3), which is nonlinear because 238U and 235U have

different half-lives. In other words, points on the concordia

curve are where 207Pb*/235U and 206Pb*/238U both correspond

to the same date. On the concordia plot, all samples that

remained a closed system since the time of formation fall on

the concordia curve; those that do not are called discordant and

have experienced some form of open-system behavior.

This plot was quickly adopted by U–Pb geochronologists as

a means of identifying and quantifying open-system behavior



346 U–Th–Pb Geochronology
in datable materials (Davis et al., 2003; Pidgeon et al., 1966;

Russell and Ahrens, 1957; Tilton, 1960; Wasserburg, 1963). It

has beenused countless times since, and sounderstanding its use

is essential for every earth scientist with an interest in geologic

time, and it is briefly outlined here. The concordia plot is also

discussed at length in the literature and also in several good

textbooks (Dickin, 2005; Faure andMensing, 2005). The discus-

sion that follows assumes that all analyses have been corrected

for Pbc and thus contain only radiogenic lead.

Sections 4.10.3 and 4.10.5 summarize most of the geologic

and analytical sources of discordance, respectively. Here the

causes of large amounts of discordance are examined in order

to introduce how to interpret data in concordia space, without

going into detail about the mechanisms by which open-system

behavior occurs. Pb loss, Pb gain, U loss, U gain, and mixing of

different-aged material can all cause discordant arrays. Pb-loss

and mixing, or some combination of these, are the only ones

entertained regularly in the literature and have similar inter-

pretations in concordia space. Some empirical and experimen-

tal evidence has been used to argue that U mobility may be
5001000

1500

2000

2500

2 3 4 5 6 7 8 9 10 11 12 1

0.06

0.10

0.14

0.18

0.22

0.26

0.30

20
7 P

b
/20

6 P
b

3000

20
6 P

b
/23

8 U

207Pb/235U

5 10 15

45mm

20 25

0.1

(a)

(c)

(d)

0.6

0.5

0.4

0.3

0.2

0.7

2500

2000

1500

1000

3000

t0 = crystallization of zircon

t2 = growth of new zircon or Pb-loss 

t1 = age of zircon after ~1700 My of ingrowth of Pb*

t� = discordant dates between t1 and t2 

t1 = crystallization of igneous zircon

t2 = metamorphic overgrowth 

Same scenario as above, shown at t3 
 

Pb–Pb dates of purple analyses
are equal to true date

Figure 4 Graphical representation of zircon growth history in the Wetherill
(a) Example of a 1700 Ma zircon losing Pb or mixing with metamorphic over
closed-system ingrowth of Pb, the zircons appears on concordia at t1; at t2 th
represents zircons that are discordant following partial Pb loss or mineral ov
and continues to evolve up the concordia curve. The discordia line defined by
representing the original igneous crystallization event at t1, and a lower interc
or overgrowth occurred. (c) The same scenario as in (b) but in a T–W diagra
be recorded in the event of metamorphism as t2. (e) The case where Pb loss
Note color coordination from (a)–(c) with descriptions in (d) and (e).
important under certain conditions (e.g., Sinha et al., 1992;

Williams et al., 1984).

When a mineral crystallizes and begins accumulating Pb* in

a closed system, 207Pb*/235U and 206Pb*/238U evolve such that

both ratios follow the concordia curve (Figure 4). If the system

experiences a single episode of Pb loss, the lead leaving the

system has a 207Pb/206Pb composition of the mineral at that

time, which corresponds to its Pb–Pb date (eqn [9]). Multiple

minerals that experience a similar evolution but with different

amounts of Pb loss will initially fall on a discordia line that goes

through the origin and intersects the concordia curve at the date

that corresponds to the real age. (Please note the difference

between a date and an age, which is described in Section

4.10.5.1.) In such a case, the Pb–Pb date will be identical to

the upper intercept date. If the minerals then become closed

systems again, they continue to accumulate Pb* and evolve on a

trajectory such that the discordia array is preserved as a line. If

one were to date these minerals 100 My later, the upper inter-

cept date would correspond to the true formation age of the

mineral and the lower intercept of the discordia line would
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intersect the concordia curve at a date corresponding to the time

of the Pb-loss event. In such a case, none of the U–Pb or Pb–Pb

dates of single minerals will have geologic meaning, but the

discordia line would yield geologic insight.

If an analysis mixes two domains with different ages, for

example an old zircon core and a younger zircon rim, the exact

same effect is observed and the interpretation in concordia

space is the same. This simple graphical analysis can be ex-

tended to multiple Pb-loss events or mixing of multiple aged

end-members, though the data will become scattered off of a

line, making robust geologic information difficult to extract.
4.10.2.3.3 Tera–Wasserburg diagram and 3D isochrons
Several other types of concordia diagrams can be constructed

in the U–Th–Pb system by placing any two (or more) of the

four utilizable clocks onto axes. Th–Pb versus U–Pb diagrams

have been used (Searle et al., 2007; Steiger and Wasserburg,

1966; Villeneuve et al., 2000), especially for monazite, whose
206Pb/238U systematics are compromised by 230Th disequilib-

rium due to very high Th/U (see Section 4.10.3; Searle et al.,

2007; Villeneuve et al., 2000). The most popular alternative to

theWetherill diagram is the Tera–Wasserburg (T–W) concordia

diagram, which places 238U/206Pb and 207Pb/206Pb on the

x- and y-axes, respectively (Tera and Wasserburg, 1972a,b). If
238U/206Pb* and 207Pb*/206Pb* (i.e., corrected for Pbc, as is

done on the Wetherill diagram) are plotted on the T–W

diagram, concordant and discordant data can be interpreted

identically to the Wetherill concordia diagram (Figure 4).

However, if a cogenetic suite of samples fall off of concordia

solely from variable contamination by a single initial Pb com-

position, then a line drawn through the dataset will intercept

concordia at the true age and the 207Pb/206Pb axis at the
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component of the mineral. See text for discussion.
composition of Pb0 (i.e., where U¼0, so there is no Pb*). It

therefore combines some of the power of isochron methods by

displaying initial Pb compositions with the power of a con-

cordia diagram by simultaneously testing for signs of open

system behavior (Figure 5).

The power of linear regression in T–W space to identify Pbc
composition breaks down, however, if a sample is affected by

Pb loss or mixing of multiple age domains. This could be

identified if a discordia does not statistically fit a line, or if

different age domains within the analyzed minerals can be

dated. A statistically more rigorous way of testing these as-

sumptions is by using a 3D isochron (Ludwig, 1998; Wendt,

1984), which simultaneously determines the initial
206Pb/204Pb and 207Pb/204Pb compositions and age for coge-

netic samples (Figure 5). The method plots 238U/206Pb versus
207Pb/206Pb in one plane of the coordinate system and
204Pb/206Pb in the third dimension. A suite of cogenetic min-

erals whose spread is caused solely by Pbc should fall on a line

in this space, and so, in addition to providing high-precision

dates, this method can test whether Pb loss or inheritance is

important in a given high-Pbc dataset (Ludwig, 1998). These

methods have been applied successfully in numerous cases,

and usually yield more precise estimates of Pbc isotopic com-

position than 2D isochrons (Amelin and Zaitsev, 2002;

Gelcich et al., 2005; Schoene and Bowring, 2006).
4.10.3 Causes of Discordance in the U–Th–Pb System

Because the U–Th–Pb system is amenable to scrutiny of open-

system behavior, the causes of discordance have received much

attention. As a result, some of these causes are well understood,
mposition of nonradiogenic Pb (Pbc) at 238U/206Pb = 0;
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while others remain more enigmatic. Here, the term discor-

dance is used synonymously with open-system behavior.

However, as will be discussed in Section 4.10.5, many samples

may have experienced open-system behavior but are still sta-

tistically concordant (i.e., overlap the concordia curve within

uncertainty), especially in young rocks, or for data obtained

using low-precision analytical techniques. Nonanalytical, or

‘geologic,’ reasons for discordance discussed here in some detail

are (1) mixing, (2) Pb loss, (3) intermediate daughter product

disequilibrium, and (4) initial Pb. Other factors causing discor-

dance, such as the U isotopic composition of the sample and

decay constant uncertainties, will be discussed in Section 4.10.5.
4.10.3.1 Mixing of Different Age Domains

It has long been known that zircon and other minerals can

contain old cores and one or more generations of younger

overgrowth that, if analyzed together, can lead to discordant

arrays in concordia space. These were initially identified opti-

cally in mineral separates or grain-mount (Bickford et al.,

1981; Corfu and Ayres, 1984; Krogh and Davis, 1975), later

by backscatter electron imaging (Wayne and Sinha, 1988;

Wayne et al., 1992), and finally cathodoluminescence imaging

was widely popularized (Hanchar and Miller, 1993; Hanchar

and Rudnick, 1995; Schenk, 1980). Backscattered and catho-

doluminescence imaging have revealed internal zonation

within minerals that may record whether different growth

zones are igneous or metamorphic in origin, whether resorp-

tion occurred prior to overgrowth, etc. These simple yet

powerful tools are now used ubiquitously by analysts doing

in situ U–Pb geochronology as a means of identifying and

isolating different growth domains in zircon, monazite, tita-

nite, and apatite. The high spatial resolution of these tech-

niques (see Section 4.10.4) has been crucial in revealing the

metamorphic histories of rocks with complexly zonedminerals

(e.g., Bowring et al., 1989; Cottle et al., 2009b; Harley

and Kelly, 2007; Kelly and Harley, 2005; Rubatto, 2002;

Schaltegger et al., 1999; Vavra et al., 1996). Grain imaging

prior to isotope dilution thermal ionization mass spectrometry

(ID-TIMS) is gaining increasing use as a means of avoiding

grains with obvious inherited cores or by isolating different

growth domains by mechanically breaking imaged grains prior

to analysis (Corrie and Kohn, 2007; Crowley et al., 2007;

Gordon et al., 2010; Hawkins and Bowring, 1999; Schoene

and Bowring, 2007). Whichever technique is used, the goal is

either to isolate mineral cores and rims in order to date those

events with higher precision and accuracy than is achievable by

calculating upper or lower intercept dates in concordia space,

or to establish that the different spatial domains are not

temporally resolvable (Dumond et al., 2008).
4.10.3.2 Pb Loss

A major focus of U–Pb geochronologists has been to under-

stand discordia arrays in zircon analyses. Though mixing of

growth domains with different ages is easily understood and is

now often resolvable using high spatial resolution measure-

ment techniques, the process of Pb loss has numerous possible

causes that are difficult to quantify. The example given in

Figure 4 follows the common interpretation that the lower
intercepts of discordant arrays represent geologically signifi-

cant events that caused Pb loss in a suite of zircons. Tilton

(1960) noted the odd coincidence that many zircon discordia

arrays from different continents had broadly similar lower in-

tercepts of�600 Ma, but did not follow linear arrays, as would

be expected from a single Pb-loss event. He instead derived

formulas to explain Pb loss in concordia space as a result of

volume diffusion of Pb through the zircon crystal lattice. He

realized the conundrum of this model, namely that while

many zircons remain closed systems through high-temperature

metamorphism, others fall on discordant arrays with lower

intercepts that are in fact younger than K–Ar dates in biotite

(in which Ar diffuses at lower temperatures than 300 �C) from
the same rocks. Following the detailed empirical study of Silver

and Deutsch (1963), Wasserburg (1963) derived equations for

a model in which Pb loss occurred by diffusion, but with a

diffusion coefficient that was a function of U- and Th-induced

radiation damage to the zircon lattice. Models for volume

diffusion of Pb have now been described analytically

and numerically, and applied to U–Pb thermochronometers

such as titanite, apatite, and rutile. These applications will be

highlighted separately in Section 4.10.6, while zircon is given

special treatment here.

Radiation damage to zircon is a result of both alpha recoil

and fission track accumulation (Deliens et al., 1977; Meldrum

et al., 1998; Nasdala et al., 1996; Pidgeon et al., 1966; Silver and

Deutsch, 1963), and has been shown to correlate roughly with

the degree of discordance in some zircon suites (Nasdala et al.,

1998). At temperatures above �250 �C, radiation damage in

zircon is annealed on short geologic timescales (Ketcham et al.,

1999); experimental data for diffusion of Pb in zircon show it to

be negligible at temperatures of even>900 �C in non-metamict

crystals (Cherniak and Watson, 2001; Lee, 1997). Attempts at

revising equations for radiation-induced Pb diffusion, for exam-

ple by adopting short-circuit diffusion models (Lee, 1995), have

not proven useful for zircon. Additional mechanisms that may

contribute to Pb loss are crystal plastic deformation as ameans of

generating fast-diffusion pathways (Reddy et al., 2006) and low-

temperature hydrothermal dissolution–reprecipitation (Geisler

et al., 2002, 2003). Nonetheless, the conclusion remains that Pb

loss should not occur in zircons except at low temperatures.

Mezger and Krogstad (1997) inferred that Pb loss at high tem-

peratures is a result of recrystallization of metamict zircon, and

could result in meaningful or meaningless lower intercept dates.

The concept of ‘recrystallization,’ however, is a nebulous and

poorly defined process. Alternatively, it may be more

reasonable that lower intercept dates that appear tohave geologic

meaning (i.e., they correspond to a known metamorphic event)

may represent core–rim mixing arrays that are perhaps super-

imposed on low-temperature Pb loss in metamict zircons.

Or, more simply, that the exact opposite of the traditional inter-

pretation is correct: that lower intercept dates represent not the

time at which Pb loss occurred, but the time at which Pb loss

stopped due to high temperature annealing.

Whatever the exact mechanism of Pb loss in zircons, the

most important advances in overcoming discordance have not

been from understanding its cause but instead from eliminating

it. In addition to methods of avoiding selection of metamict

grains (e.g., Krogh, 1982a), these can be summarized in three

advances: (1) the air abrasion technique (Krogh, 1982b), which
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mechanically removes the outer, often higher-U andmoremeta-

mict domains of grains prior to analysis of whole grains; (2) the

use of in situ dating techniques, which have sufficient spatial

resolution to attempt either avoiding domains that have under-

gone Pb loss or intentionally isolating different age domains

that have been identified texturally; and (3) the invention of the

chemical abrasion technique (Mattinson, 2005), which partially

anneals zircons and then chemically dissolves discordant do-

mains, leaving a closed-system residue amenable to analysis.

The latter two techniques will be discussed in more detail in

Sections 4.10.4 and 4.10.5.

4.10.3.3 Intermediate Daughter Product Disequilibrium

The assumption of secular equilibrium, outlined in Section

4.10.2.1, is crucial for simplifying the complicated U–Th–Pb

decay chains into manageable equations from which a date can

be calculated. This assumption is incorrect, however, if one or

more of the intermediate daughter products is fractionated from

its parent isotope such that the crystallized mineral is not in

secular equilibrium immediately after formation (Mattinson,

1973; Schärer, 1984). This can occur due to fractionation of the

intermediate product during partial melting or during crystalliza-

tion of the resulting liquid. Though fractionation of intermediate

products certainly occurs during partial melting processes, and

has been documented in young volcanic rocks (e.g., Condomines

et al., 2003, and references therein), the effect of this process on

older minerals is difficult to quantify or even treat qualitatively.

However, correcting for fractionation during crystallization is

commonly attempted. Qualitatively, if an intermediate product

is preferentially partitioned into themineral over its parent, it will

result in an excess amount of Pb*, and therefore an overestimate

of the true age. Conversely, an age will be underestimated if an
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intermediate product is preferentially excluded during crystalliza-

tion (Figure 6). Given the diversity of geochemical behavior of all

elements in the three decay chains, it is unlikely that anymineral

is, in fact, in secular equilibrium at the time of crystallization.

For reasons described in Section 4.10.2.1 and apparent in

eqns [1] and [2], only intermediate products with long enough

half-lives will be present or absent in enough quantity to affect a

resulting date. The intermediate products that meet this criteria

in the 238U decay chain are 230Th (t1/2¼75.4 ky) and 234U

(t1/2¼245 ky), but it is often assumed that 234U is not signifi-

cantly fractionated from 238U at high temperatures. 231Pa is the

only relatively long-lived isotope in the 235U decay chain. 230Th

disequilibrium has received the most attention in the literature,

in part because very high Th/U minerals such as monazite

induce strong Th and U fractionations from melt to mineral,

resulting in excess 206Pb that is easily recognizable when plotted

against 207Pb/235U on a conventional concordia plot

(Mattinson, 1973). Schärer (1984) and Parrish (1990) quanti-

fied these effects by relating the amount of intermediate product

lost or gained relative to secular equilibrium during mineral

crystallization using versions of eqn [10]:

texcess ¼ 1

l238

� �
ln 1þ f � 1ð Þ l238

l230

� �� �
[10]

where

f ¼ Th=Uð Þmineral

Th=Uð Þliquid

$ %
[11]

Thus, f is equivalent to the ratio of the mineral/melt parti-

tion coefficients for Th and U for the phase of interest

(DTh/U
mineral/melt). In theory, if partition coefficients for min-

erals are invariant, then f should always be the same and one
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could easily correct for intermediate product disequilibrium; in

reality, the relative partition coefficients of Th and U for high-U

minerals are not well understood. Published zircon/melt par-

tition coefficients for Th and U are variable (Fukuoka and

Kigoshi, 1974; Hanchar and van Westrenen, 2007; Hinton

and Upton, 1991; Sano et al., 2002; Thomas et al., 2002) and

may be dependent on temperature, pressure, and magma com-

position (Rubatto and Hermann, 2007). Partitioning of Th and

U between melt and titanite and apatite have been determined

experimentally (Prowatke and Klemme, 2005, 2006a,b), but

the range observed in experiments (e.g., as a result of magma

composition) precludes a bulk correction for intermediate

product disequilibrium, even in magmatic minerals.

Because of the uncertainties in DTh/U
mineral/melt determined

experimentally and the inconsistency of the f factor calculated

empirically using 232Th–208Pb dates (Barth et al., 1994; Oberli

et al., 2004), correcting for 230Th disequilibrium is inherently

imprecise. Fortunately, Th/Umineral can be measured directly

during mass spectrometry or estimated by assuming concor-

dance between the U–Pb and Th–Pb dates, measuring 208Pb*,

and then calculating 232Th. This leaves one unknown,

Th/Uliquid. One approach is to use the Th/U of the rock from

which the mineral is extracted (Schärer et al., 1990). However,

this estimate may be inaccurate because one must assume the

rock represents a liquid composition and that U and Th have

not been fractionated since crystallization. Another approach,

for volcanic minerals, is to use the Th/U of the host glass

(Bachmann et al., 2010; Schmitz and Bowring, 2001), assum-

ing that the mineral grew directly from the liquid that

quenched to form the glass.

For minerals where f<1, such as zircon and xenotime, the

correction for 230Th disequilibrium has a lower limit at f¼0,

yielding a date that is 110 ka too young (Schärer, 1984; using

the 230Th decay constant of Cheng et al., 2000; Figure 6). In

such cases, it is common to assume a Th/Uliquid, given that this

ratio usually falls between 2 and 6 in magmas. Equations [10]

and [11] can be used to evaluate the influence of this assump-

tion (Figure 6). Such an exercise shows that it is more accurate

to make the correction assuming a Th/Uliquid than not make the

correction at all. Propagating the uncertainty of the correction

into final dates results in minimal added uncertainty, except for

very young samples or samples hypothesized to have similar

Th/U for the melt and mineral (Bachmann et al., 2010; Crowley

et al., 2007). For minerals where f�1, such as allanite and

monazite (and sometimes titanite and apatite), the excess age

resulting from initial 230Th disequilibrium can be debilitating;

many geochronologists simply avoid using the 206Pb/238U date

in such cases (Cottle et al., 2009b; Crowley et al., 2009; Schoene

and Bowring, 2006; Villeneuve et al., 2000).

The effect of 231Pa disequilibrium is poorly understood, in

part because there are no other isotopes of Pa that can be used

as a proxy for Pa and U partitioning. Furthermore, Pa is not

generally targeted in experimental partitioning studies. Schmitt

(2007) measured [231Pa]/[235U] in young volcanic zircons and

found values slightly greater than 1, suggesting that only a

15 ka age excess would be present in older samples. Nonethe-

less, extreme 231Pa disequilibrium has been documented in

zircon (Anczkiewicz et al., 2001), which indicates the impor-

tance of future experimental studies to understand the effect of

Pa partitioning on 207Pb/235U dates.
4.10.3.4 Correction for Initial Pb

Equations [3]–[5] illustrate the importance of correcting for

the presence of initial lead (Pb0; note the distinction used here

that Pb0 differs from Pbc in that Pbc is a more general term that

includes laboratory blank Pb) in a system in order to obtain an

accurate date. Both 2D and 3D isochrons can be used to solve

for the isotopic composition of Pb0 if a dataset meets the

required assumptions that go into isochron calculations. On

the T–W concordia diagram (part of most 3D isochrons;

Section 4.10.2.3.3), the 207Pb/206Pb of Pb0 is the y-intercept,

given an otherwise closed system and adequate spread of data

to define a line. The effect of Pbc on a Wetherill concordia

diagram is to create a discordia with slope equal to the
206Pb/207Pb*(238U/235U) (i.e., the isotopic composition of

U in the sample), though data are usually corrected for Pbc
before being plotted. A dataset in either concordia diagram can

also form a linear array because of mixing or Pb loss. It is

possible to determine whether Pbc or mixing/Pb loss is respon-

sible for the spread in data for young samples because the

linear array created by Pbc is at high angles to concordia and

the upper intercept with concordia is >4.5 Ga. For Paleopro-

terozoic or Archean samples, however, the Pbc array can be

nearly parallel to discordias created by mixing/Pb loss, and it is

thus dangerous to assume the source of the discordance.

Other methods for common Pb correction involve an as-

sumption about its composition. For example, by measuring

the moles of 204Pb in a sample and assuming a 206Pb/204Pb of

the Pbc from a single source, one can calculate directly the

amount of 206Pb* (Williams, 1998). If one assumes that total
206Pbc is composed of 206Pb0 and 206Pb from blank, or any

number of sources, then it is also necessary to measure or

assume the 206Pb/204Pb of the other sources, in which case

the equations become slightly more complicated (Ludwig,

1980; McLean et al., 2011; Schmitz and Schoene, 2007).

Assuming or measuring multiple sources of nonradiogenic Pb

is standard in ID-TIMS, though the amount and composition

of each is still difficult to determine accurately and, in cases

where Pb* is very low relative to Pbc, this presents a significant

source of uncertainty. In the case of zircon, it is easily argued

that there is no Pb0, and all Pbc is introduced through one or

more sources of laboratory contamination. The isotopic com-

position of Pb0 adopted for other minerals is often assumed

based on a bulk-Pb evolution model (e.g., Cumming and

Richards, 1975; Stacey and Kramers, 1975) given an estimated

crystallization age for the mineral. Alternatively, it can be esti-

mated by dissolving or leaching Pb from coexisting low-U

phases such as feldspar (Catanzaro and Hanson, 1971;

Chamberlain and Bowring, 2000; Housh and Bowring,

1991); several papers make direct comparisons of these

techniques (Chamberlain and Bowring, 2000; Schmitz and

Bowring, 2001; Schoene and Bowring, 2006, 2007) with the

general conclusion that analyzing cogenetic phases is more

robust (Figure 7). However, Schoene and Bowring (2006)

argue that apatite and titanite Pb0 from a syenite were derived

from an evolving source that is not defined by feldspar Pb and

instead prefer the 3D isochron-derived Pb0 composition.

As 204Pb is always the least abundant Pb isotope present

(206Pb/204Pb�1000 is typical for zircon), 204Pb is difficult

to measure and is also affected by isobaric interferences.
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In fact, in many analytical setups typical for LA-ICPMS U–Pb

dating, 204Pb is not measured due to the unresolvable isobaric

interference from 204Hg, requiring different methods of Pbc
correction (Andersen, 2002; Horstwood et al., 2003). Most of

these are similar to the 204Pb correction, but instead involve

assuming an initial 207Pb/206Pb or 208Pb/206Pb and concordance

between the U–Th systems (Williams, 1998). The former, ‘207

correction,’ is essentially the same as fixing a 207Pb/206Pb inter-

cept on a T–W concordia plot and regressing it through the

data, and thus assumes concordance. If Pb loss and mixing are

important in a dataset, then both the 208 and 207 corrections

are inaccurate. Andersen (2002) presents amethodof 204-absent

Pbc correction utilizing all three decay schemes that does not

assume concordance, but insteadmust assume a time of Pb loss.
4.10.4 Measurement Techniques

There are three principal analytical methods used for U–Th–Pb

geochronology: (1) ID-TIMS, (2) secondary ion mass spec-

trometry (SIMS), and (3) laser ablation inductively coupled

plasma mass spectrometry (LA-ICPMS; Figure 8). Most mod-

ern applications of U–Th–Pb geochronology now involve

either separating the minerals of interest by standard magnetic
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and density techniques and dating single, carefully chosen min-

eral grains, or measuring grains in thin section or epoxy grain

mounts using in situ techniques. Exceptions are studies involv-

ing dating low-U materials such as carbonates and meteorites,

where different approaches must be taken (e.g., Connelly and

Bizzarro, 2009; Rasbury and Cole, 2009). The nuts and bolts of

these analytical methods and instrumentation are outlined in

separate chapters of the Treatise on Geochemistry (see Volume

15), and so here the focus is only on those aspects that are the

most important or unique to U–Pb geochronology, and the

various sources of uncertainty that contribute to the precision

of each technique. A more general discussion of precision and

accuracy of the U–Pb method is given in Section 4.10.5.

Several methods for U–Th–Pb geochronology exist that do

not measure both U and Pb isotopes or any isotopes at all. The

zircon evaporation method, which places a zircon directly on a

filament in a TIMS, measures 207Pb/206Pb, and was applied

widely to Archean rocks with the intention of eliminating

discordance, which unfortunately cannot be tested without U

measurements (Davis, 2008; Kober, 1986; Kröner and Todt,

1988; Kröner et al., 1996). Another method involves measur-

ing U–Th–Pb elemental abundances but not isotopes. The

U–Th–total Pb method, colloquially called electronmicroprobe

U–Th–Pb dating, permits calculations of an age by measuring

chemical composition on an electron microprobe (Cocherie

et al., 1998; Montel et al., 1996). The limitations of this

method are that one must assume concordance and no Pbc,

and the method is also restricted to minerals with enough U,

Th, and Pb to be measured with adequate precision by electron

microprobe (e.g., monazite). The advantage is the unrivaled

spatial resolution of �1 mm, which can be critical for resolving

growth histories of polygenetic monazite (Mahan et al., 2006;

Williams and Jercinovic, 2002; Williams et al., 2007).
4.10.4.1 ID-TIMS

ID-TIMS was pioneered in the 1950s by Alfred Nier and was

the only tool for U–Pb geochronology for several decades.

Initially, samples ranged from whole rocks to very large

(many grams) aliquots of relatively pure mineral separates

that were dissolved in steel vessels prior to analysis, with

quoted precisions of a few percent on Pb/U ratios (Figure 9).

Sample size has been reduced by many orders of magnitude

and precision increased by a factor of 10–100, such that now

some labs measure small fragments of single minerals to a

precision better than 0.1% for a 206Pb/238U date (Figures

8 and 9). Other summaries of the ID-TIMS method applied

to U–Pb geochronology can be found in Bowring et al. (2006)

and Parrish and Noble (2003)

The well-documented complexity of zircon populations

from single samples makes it necessary to measure single min-

eral grains by ID-TIMS. These are generally hand-picked under

an optical microscope, though it is becoming more common

to prescreen zircons via backscattered or cathodoluminescence

imaging prior to analysis, as is routinely done in in situ

methods. Remediation of Pb loss in zircons was accomplished

for over 20 years by the air-abrasion method (Krogh, 1982b),

removing the higher-U outer rims of zircons, which are often

more radiation-damaged and prone to Pb loss. More recently,

Pb-loss amelioration or elimination is approached through
chemical abrasion (CA-TIMS; Mattinson, 2005), which selec-

tively dissolves radiation-damaged or altered domains of zir-

con, regardless of their position within a grain. This method

has improved considerably both the precision and accuracy of

the ID-TIMS method and is discussed in Section 4.10.5.5.

Minerals selected for dating (�chemical abrasion) are

spiked with a tracer solution (see below), dissolved in Teflon

vessels in either HF or HCl, and U and Pb are ideally separated

from other elements using ion exchange chemistry. This meth-

odology has not changed since the introduction of Teflon to

geochronology (Krogh, 1973), though all materials and vessels

have been vastly downsized to account for smaller sample size

and to reduce Pb blank (e.g., Parrish, 1987). Separating U and

Pb through ion exchange chemistry serves two purposes: (1)

because thermal ionization mass spectrometers are high-

sensitivity, low-mass resolution instruments, potential isobaric

interferences are best removed prior to analysis, and (2) other

elements have a tendency to impede ionization of Pb and U on

the filament, thereby reducing signal size and therefore

precision.

TIMS involves placing a sample onto a metal filament

(typically Re) and heating it to ionize the elements of interest,

which are in turn accelerated into a magnetic sector mass

spectrometer by applying an�8000–10000 V electric potential

near the filament under high vacuum (see Chapter 15.18). In

U–Pb measurements, Pb ionizes predominantly as Pbþ and U

is measured either as the metal Uþ or as the oxide UO2
þ

species. For uranium oxide measurements, both U and Pb

can be placed on the same filament in a silica gel emitter

(e.g., Cameron et al., 1969; Gerstenberger and Haase, 1997)

and analyzed at different temperatures. Uranium ratios must,

in this case, be corrected for an assumed or measured isotope

composition of oxygen (e.g., Schmitz and Bowring, 2001;

Wasserburg et al., 1981). Uranium metal is analyzed by load-

ing U onto a separate filament from Pb in a reducing substance

or by using a triple-filament technique (Chen and Wasserburg,

1981; Condon et al., 2010; Hiess et al., 2012). Typical mea-

surement times are on the order of a few hours for Pb, if

measured on a single ion counter, and much faster if measured

on faraday cups, though the latter is only possible with large

samples (>100 pg Pb). Uranium can also be measured on

an ion counter or faraday cups, but ideally the latter, given

the higher precision that is possible (�0.002% instead of

�0.01%) for single minerals with a few nanograms of U. The

high precision that is achieved by TIMS relative to other tech-

niques is primarily a result of generating stable ion beams with

relatively small and predictable mass-dependent fractionation

over hours of analysis.

Isotope dilution refers to the process of spiking a sample

with a known quantity of one or more tracer isotopes in order

to convert ratios measured by mass spectrometry to moles of

sample isotopes. A mixed U–Pb tracer is required for U–Pb

measurements done by TIMS because both elements cannot

be measured simultaneously during an analysis, and even if

one tried to, the ionization efficiency is so different between

the elements that a substantial and imprecise correction would

have to be applied to account for elemental fractionation.

Modern tracers for U–Pb ID-TIMS work involve some mixture

of 205Pb, 202Pb, 233U, 235U, and 236U. Of those isotopes, only
235U is naturally occurring, making the equations used to
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Figure 9 Plots of sample size and precision versus publication time for each method. Data were obtained by searching for the ten most cited papers for
a given 1- or 2-year period and extracting the average 2s uncertainty in 206Pb/238U dates or ratios for single analyses (not weighted means), then taking
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calculate moles of, for example, 206Pb in the sample fairly

simple:

206Pb
205Pb

� �
measured

¼
206Pbsample þ 206Pbblank þ 206Pbtracer

205Pbtracer

� �
[12]

where (206Pb/205Pb)measured is already corrected for mass-

dependent isotope fractionation during analysis, 206Pbtracer
and 205Pbtracer are known, and 206Pbblank can be estimated

from the amount of 204Pb measured relative to 205Pb and the
206Pb/204Pb of the blank. In minerals that contain initial Pbc,

this equation becomes slightly more complicated given the

necessity to partition the 204Pb into its blank Pbc and Pb0
components. Thorough examinations of these algorithms

have been published recently (McLean et al., 2011; Schmitz

and Schoene, 2007), building on previous work (Ludwig,

Figure&nbsp;9
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1980; Roddick, 1987). The correction for mass fractionation

applied to (206Pb/205Pb)measured and all other Pb ratios is typ-

ically done either by (1) regularly measuring a standard of

known composition and calculating the mean and variability

of its mass fractionation, then applying the same correction

to samples; or (2) using double spikes, where the ratio of two

spike isotopes are known and can be used to calculate mass

fractionation during each analysis. In the second case, 202Pb

and 205Pb can be used (Amelin and Davis, 2006; Parrish and

Krogh, 1987; Roddick et al., 1987; Schoene et al., 2010a; Todt

et al., 1996) and 233U and 236U, or 235U can be used (Roddick

et al., 1987). Using 235U as the second U spike isotope requires

that a U isotopic composition be assumed for the sample

(though see Section 4.10.5.2; full equations for this correction

are given in Schmitz and Schoene, 2007).

As shown in Figure 9, ID-TIMS U–Pb geochronology is by

far the most precise analytical technique. Initial advances in

precision through the 1960s and 1970s were the result of better

mass spectrometry and lower Pb contamination levels

(blanks). The precipitous decline in sample size and increased

precision in the late 1970s may have been entirely the result of

the introduction of Teflon to isotope geochemistry (Krogh,

1973). The next 20 years saw little improvement in precision

but several orders of magnitude decrease in sample size as

workers pushed toward single mineral analyses (Lancelot

et al., 1976; Michard-Vitrac et al., 1977; Oberli et al., 1990;

Parrish, 1987, 1990; Von Blanckenburg, 1992). Further em-

phasis on better mass spectrometry, ionization efficiency of Pb

and U, and continually lower Pb blanks – to the subpicogram

level – has further reduced the uncertainty in reported dates,
Mass fractionation Pb
αPb= 0.11±0.04 %/amu-1

U mass 
fractionation 

Ash bed
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200.13 ± 0
Pb*/Pb
Pbc= 0

(206Pb/20
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Measure
238U/235U
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238U/235U

North Mt. Basalt zircon
Central Atlantic Magmatic
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200.38 ± 0.05 Ma
Pb*/Pbc= 219
Pbc= 0.8 pg

Figure 10 Pie charts illustrating the most important sources of uncertainty
Pb*/Pbc, and Pbc, and analytical precision. Dates are 206Pb/238U dates�2s u
individual components. The two charts on the left are analyses from Schoene
On the left chart, about 70% of the 0.05 Ma variance is derived from the vari
using a double-Pb tracer will improve uncertainties drastically for this sample
comes from the isotopic composition of the blank, and using a double-Pb sp
extreme example where correction for 230Th disequilibrium contributes a signi
algorithms and modified spreadsheet from Schmitz and Schoene (2007).
such that average precisions reported in the past few years on

single zircons are about 0.2% of the reported date, but 0.05% is

routinely achieved in some labs.

Due to reproducibility of mass fractionation and the use of

isotope dilution, the sources of uncertainty in ID-TIMS U–Pb

dating are both identifiable and quantifiable. Recent efforts to

redraw data reduction and uncertainty estimation have

resulted in transparent and well-documented software that is

freely available and amenable to numerous mass spectrometer

platforms (Bowring et al., 2011; McLean et al., 2011; Schmitz

and Schoene, 2007). An interesting outcome of these efforts is

the ability to quantify different sources and magnitudes of

uncertainty from each U–Pb analysis, thereby providing targets

for further improvement. Figure 10 illustrates the most signif-

icant sources of uncertainty to three different single zircon

analyses using pie charts. The charts are constructed by com-

paring the magnitudes of all sources of variance that sum up to

the variance of the resulting date (Schmitz and Schoene, 2007),

where the variance is the standard deviation squared. For other

visualization diagrams that (importantly) contain more infor-

mation about sources of covariance, see McLean et al. (2011)

and Bowring et al. (2011). Note that the relative variance

contributions from each variable can be quite different and

depend on the age, Pb* content, Pb blank, etc. A user can thus

identify the largest uncertainty contributions and aim to im-

prove them in future work, through lower Pb blanks, a better

constrained Pb blank isotopic composition, or better mass

spectrometry.

It is worth noting, however, that a number of these sources

of uncertainty are still difficult to quantify. The isotopic
αPb 
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206Pb/204Pb

 zircon
sic boundary

.31 Ma
c= 3.8
.5 pg

(206Pb/204Pb)blank

= 18.30 ± 0.33

4Pb)blank
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d

230Th diseq.;
(Th/U)magma
= 4 ± 2
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0.357 ± 0.008 Ma
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Pbc= 0.4 pg

in ID-TIMS U–Pb analyses, and how they change as a function of age,
ncertainties and represent the square root of summed variances of the
et al. (2010a,b), and the one on the right is from Bachmann et al. (2010).
ance in mass fractionation during mass spectrometry. This implies that
. In the center chart, where Pb* is very low, about 55% of the variance
ike will not increase precision markedly. The third chart illustrates the
ficant percentage of the total uncertainty. Pie charts were generated using
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composition of the Pb blank, which provides the basis for

subtracting Pbc isotopes from sample isotopes, is difficult to

measure and potentially highly variable because the blank can

come from many different potential sources (reagents, Re fila-

ments, etc.). The correction for nonblank Pbc, though not

usually applicable to zircon, is also difficult to measure directly

but is important for minerals with high initial Pb, such as

titanite and apatite (see Section 4.10.3.4). Isobaric interfer-

ences such as 205Tl and BaPO4, though mostly removed during

ion exchange chemistry prior to loading the sample onto the

filament, still require careful consideration (e.g., Amelin and

Davis, 2006). Pb mass fractionation during measurement is a

significant source of uncertainty, especially when corrected

using the mean of repeated standard measurements, as one

must assign its reproducibility as an uncertainty in each mea-

surement. The addition of a double-Pb spike, double-U spike

tracer solution for isotope dilution dramatically lessens the

uncertainty contribution from mass fractionation (Schoene

et al., 2010a), which can reduce U–Pb and Pb–Pb date un-

certainties by up to 50% for low-blank, high-Pb* analyses.

Some studies using double-Pb spikes have also recognized

the importance of mass-independent fractionation (e.g.,

Thirlwall, 2000), and though the magnitude of this effect is

relatively small (�0.01% amu�1), quantifying this will likely

become more important in high-precision geochronology in

the near future. Other targets for improved precision include

lowering the Pb blank to femtogram levels, better calibration

of nonspike isotopes in tracer solutions (e.g., 206Pb), and

improving the ionization efficiency for Pb and U.
4.10.4.2 SIMS

SIMS was developed in the 1970s as a means of measuring

small domains of material for isotopic composition and ele-

mental abundances (Andersen and Hinthorne, 1972a,b;

Shimizu et al., 1978). SIMS was quickly recognized as a

powerful tool for resolving dates within single zircons with

complicated growth histories through U–Th–Pb geochronol-

ogy (Compston et al., 1984; Hinthorne et al., 1979). The

development of the sensitive high-resolution ion microprobe

(SHRIMP) formed the foundation of modern SIMS U–Th–Pb

geochronology (Compston et al., 1984), which remains a

powerful tool to date small (<100 mm) minerals within their

petrographic context and/or domains in single crystals that are

revealed through various imaging techniques (see Section

4.10.3.1). Excellent descriptions of this technique applied to

U–Th–Pb analysis are given elsewhere (Ireland and Williams,

2003; Williams, 1998), and here just the outline of the most

important aspects is given.

The power of SIMS lies in its ability to ablate small-diameter

spots (10–40 mm) with very shallow pit depth (<4 mm) by

hitting the surface with a high-energy ion beam (typically

O� or O2
�) under vacuum. A small portion of the liberated

material forms atomic ions or molecular ionic compounds

and is accelerated into a mass spectrometer (this process is

called sputtering). Because ionized matter is composed of

every element present in the targeted mineral, as well as their

oxides and hydroxides, very high mass resolution is required to

resolve potential isobaric interferences. The combination of a

large-radius magnetic sector and electrostatic analyzer results
in mass resolutions as high as 10000. This allows one to

distinguish between, for example, 206Pbþ (M¼205.97) and

HfSiþ (M¼205.92), which is crucial for dating zircon by this

method (Ireland and Williams, 2003).

Unlike TIMS geochronology, SIMS cannot use isotope dilu-

tion to calculate Pb/U. Instead, sample unknowns are analyzed

in rotation with a mineral standard of known Pb/U and a

correction is applied assuming that fractionation of Pb from

U during sputtering is the same in both cases. Though this is

generally not achievable, it was shown that Pbþ/Uþ covaries

with UOþ/Uþ during an analytical session (Hinthorne et al.,

1979). Because UOþ/Uþ can be measured directly, the offset of

true Pb/U from sample to standard can be estimated with more

confidence. Nonetheless, reproducibility requires that condi-

tions for both standard and unknown are identical – from the

flatness of the polished sample surface, to the pit size and beam

intensity, to matching the matrix material (i.e., zircon standard

for zircon unknown, but also matching compositions of

zircons can be important; Black et al., 2004; Williams, 1998).

Reported precision on single SIMS U–Pb dates is on average

�3%, which has only improved slightly in several decades of

use. This lack of improvement is partly due to the inherent

limitations in U/Pb fractionation during measurement and

also a testament to the analytical rigor practiced by the pio-

neers of this method. Sputtering of analyzed material is done at

very slow rates, leaving pits only a fewmicrons deep over about

30 min of analysis time. Nonetheless, during the analysis time,

elemental fractionation, coupled with compositional changes

in the target mineral and standard, in addition to variable

beam intensity limits the achievable precision (Ireland and

Williams, 2003; Williams, 1998). Grain-to-grain reproducibil-

ity on standards over an analytical session or between sessions

gives a good measure of the expected precision on unknowns

(Stern and Amelin, 2003). Time-dependent averages based on

standard measurement over a session can be calculated by

linear or nonlinear regression and the associated uncertainties

are propagated into each unknown (Ludwig, 2000b).

Analyzing secondary standards within grain mounts, whose

dates should be identical relative to the primary standard over

the course of an analytical session, reveals systematic offsets

between different zircon standards. These are suspected to be

due to ‘matrix effects,’ related to different Pb/U fractionation

between minerals of potentially different composition (Black

et al., 2003; Fletcher et al., 2010) or U-content (White and

Ireland, 2012). The latter may be due to different Pb and U

ionization efficiency in metamict zircon – a result of crystal

lattice damage due to the decay of U (White and Ireland,

2012). This remains an important source of systematic uncer-

tainty that has not been adequately characterized, and is diffi-

cult to propagate into the uncertainty of an unknown zircon,

demonstrating the importance of having large quantities of

well-characterized and homogeneous standard materials avail-

able to many labs (Black et al., 2003; Ireland and Williams,

2003; Wiedenbeck et al., 1995).
4.10.4.3 LA-ICPMS

LA-ICPMS, which involves lasing the surface of a mineral and

carrying the resulting ablated aerosols into a mass spectrome-

ter, was first applied to U–Pb geochronology in the 1990s
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(Feng et al., 1993; Fryer et al., 1993; Hirata and Nesbitt, 1995).

It has since become the most rapidly adopted method of U–Pb

measurement because of its high spatial resolution, rapid

analysis time, and affordability relative to SIMS. In fact, the

explosion of U–Pb papers published since�2003 (Figure 1) is

probably due in large part to the advent and availability of

LA-ICPMS data. Detailed coverage of the topic is beyond the

scope of this chapter; reviews and recent examples of the more

technical aspects of this rapidly evolving technique are given

elsewhere (Arevalo et al., 2010; Cocherie and Robert, 2008;

Gehrels et al., 2008; Horstwood et al., 2003; Kosler and

Sylvester, 2003; Simonetti et al., 2005; Sylvester, 2008; Arevalo

ToG Vo1. 15).

An LA-ICPMS system consists of two parts: (1) the laser

ablation system, including the sample cell, and (2) the

ICPMS. Laser ablation systems commonly used in U–Pb geo-

chronology consist of a solid-state (e.g., Nd-YAG) or gas-source

(e.g., Ar–F Excimer) laser of short wavelength (<266 nm).

Detailed studies of different lasers and ablation techniques

reveal that short-wavelength lasers coupled with carefully con-

trolled pulse rates (typically on the nanosecond scale) and

energy densities more efficiently ablate the tested materials

with minimized heating and also reduced, more predictable

elemental and isotopic fractionation (Guillong et al., 2003;

Günther and Heinrich, 1999a; Günther et al., 1997). Recent

advances in femtosecond-pulse-rate lasers continue to mini-

mize elemental fractionation (Claverie et al., 2009; Garcia

et al., 2008; Gonzalez et al., 2008; see Section 4.10.5).

The sample is ablated inside a sample cell with a laser-

transparent window, and ablated particles are swept from the

cell to the plasma torch by incorporation into a carrier gas.

A range of carrier gases has been explored, noting that the

choice of gas affects instrument sensitivity (Guillong and

Heinrich, 2007; Günther and Heinrich, 1999b; Horn and

Günther, 2003). As a result of these and complementary stud-

ies, most labs use He gas with or without a trace of N2, Ar, and

H. The size and geometry of the sample cell can also affect the

efficiency and stability with which the particles are transported

to the inductively coupled plasma (Cottle et al., 2009a; Kosler

and Sylvester, 2003; Muller et al., 2009; Pisonero et al., 2006).

Several types of ICP-MS are used in laser ablation U–Th–Pb

geochronology: quadrupole, single-, or multi-collector magnetic

sector instruments. The latter two are increasing in popularity

because of their versatility at measuring isotope ratios in many

elemental systems, but reported precisions and duration of

analysis (now typically less than a couple of minutes) for

U–Th–Pb geochronology for each instrument are not very dif-

ferent. The magnetic sector instruments, however, have higher

sensitivity and generally allow for smaller spot sizes in single

grains (Figure 8(c)). ICP-MS analysis is discussed in depth in

Arevelo (2012; Volume 15) of the treatise.

Multi-collector and single-collector magnetic sector or

quadrupole instruments report similar uncertainties, implying

that much of the uncertainty in LA-ICPMS U–Pb data comes

from the complicated nature of the ablation process and/or

transport to and ionization in the plasma. In particular, U and

Pb fractionation at the ablation site can be quite variable and

depend on (1) the depth within an ablation pit (Hergenroder,

2006; Horn et al., 2000; Kosler et al., 2005; Paton et al., 2010),

(2) the process by which the laser forms aerosols, and the
resulting particle size distribution (Guillong et al., 2003;

Günther and Heinrich, 1999a; Günther et al., 1997), and (3)

ionization in the plasma and the related complications intro-

duced by choice of carrier gas (Guillong and Heinrich, 2007;

Günther and Heinrich, 1999b; Horn and Günther, 2003).

In addition, as with SIMS, differences in ablation resulting

from different matrix materials and/or compositions can result

in systematic biases in U and Pb fractionation (Black et al.,

2004; Kosler et al., 2005). While this effect may be expected

between glasses and minerals of different matrices, a few stud-

ies document systematic biases even between zircon standards

when compared to ID-TIMS dates, and this process is not yet

well understood (Black et al., 2004; Gehrels et al., 2008). This

assertion is substantiated by a large dataset from the Arizona

Laserchron Center (Figure 11; G. Gehrels, personal communi-

cation). Analysis of numerous zircon standards against one

primary standard (SL-1 Sri Lankan zircon) reveals that the

mean of ten replicate analyses is within �2% of the ID-TIMS

age and the standard deviation of those means usually overlaps

with the ID-TIMS age, as also reported by Gehrels et al. (2008).

Systematic offset between different zircon standards is also

observed, which Gehrels et al. (2008) attribute to matrix effects

between zircon standards. The implication is that similar ma-

trix effects may be important in zircon unknowns, and until

the causes of systematic uncertainties from matrix effects are

better understood, the precision on single analyses and

weighted means derived from LA-ICPMS is ultimately limited

by standard variability, which appears to be�2% (Horstwood,

2008; Sylvester, 2008).

Because LA-ICPMS geochronology is being adopted so

quickly by many laboratories, many different freely or commer-

cially available software packages for data reduction and uncer-

tainty analysis exist, in addition to other home-grown

approaches (e.g., Chang et al., 2006; Gehrels et al., 2008;

Horstwood, 2008; Paton et al., 2011; Petrus and Kamber,

2012; Sylvester, 2008; van Achterbergh et al., 2001). Reducing

data using several common software-independent methods re-

veals differences in the resulting date and precision of up to

several percent for the exact same analysis (Fisher et al., 2010).

Recent community-driven efforts have adopted the goal of stan-

dardizing these procedures, and once transparency is achieved,

further progress can be made at assessing the maximum achiev-

able precision on U–Pb dates by LA-ICPMS. These efforts will

parallel the current exploration of minimizing and/or correctly

parameterizing U–Pb fractionation during LA-ICPMS analyses.
4.10.5 Precision and Accuracy of U–Th–Pb
Geochronology

The previous section briefly outlined the three most widely

used methods of obtaining U–Th–Pb dates and the achievable

precision of each method at present. In addition to differences

in spatial resolution of the different methods, the precision

afforded by ID-TIMS and the in situ methods differs by 1–2

orders of magnitude (Figures 8–11). Furthermore, because

TIMS instruments are far more stable (e.g., in terms of drift in

elemental and isotopic fractionation) than LA-ICP-MS and

SIMS setups and because isotope dilution ensures that ID-

TIMS dates are measured relative to well-calibrated isotopic
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Figure 11 Comparison of 206Pb/238U LA-ICPMS ages with ID-TIMS ages for well-characterized zircons that range in age from 28 to 1434 Ma
conducted in the Arizona Laserchron Center (figure courtesy of G. Gehrels, see Gehrels et al., 2008, for more details). All data are relative to the SL-1
zircon standard. Each square is the weighted mean of a set of ten LA-ICPMS measurements, and the error bars show the 2s standard deviation of the
weighted mean. No analyses were rejected. Data collected between 2006 and 2011. Isoprobe and Nu refer to the ICPMS used, and NWR and PM refer to
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standards, the precision and accuracy of TIMS dates are easier

to quantify. For all these reasons, ages of reference standards

used by the in situ techniques are calibrated by ID-TIMS

(Figure 12). Further, because an increasing number of decay

constants are calibrated against U–Pb dates (Nebel et al., 2011;

Renne et al., 2010; Scherer et al., 2001; Selby et al., 2007), a

discussion of the precision and accuracy of ID-TIMS geochro-

nology in effect is a discussion of how well we know geologic

time. Therefore, this section begins with a general discussion of

the accuracy of U–Pb geochronology with an emphasis on ID-

TIMS, followed by common statistical models used to interpret

U–Pb dates, which is generally applicable to all methods.
4.10.5.1 Random and Systematic Uncertainties, Precision,
and Accuracy

A discussion of precision and accuracy requires a few defini-

tions that are relatively standard in isotope geochemistry. This

terminology is generally consistent with that recommended by

the Joint Committee for Guides in Metrology (JCGM; GUM,

2008; VIM, 2012), but here these terms are highlighted as they

are used in the geochronology literature because this lexicon is

derived from direct application to the problems faced by geo-

chronologists. For a recent discussion on the application of the

Guide to the expression of Uncertainty in Measurement (GUM,

2008) to isotope measurements, the reader is referred to Potts

(2012) and Bürger et al. (2010). Here, random uncertainties

are those that arise from random effects during measurement.

One example is raw isotope ratios measured by mass

spectrometry, before mass fractionation and other corrections

have been made. Sometimes known as ‘internal,’ random un-

certainties can be improved by making more measurements.

Systematic uncertainty components vary predictably or remain

constant no matter how many measurements are taken. Exam-

ples include uncertainties in the tracer isotope composition for

TIMS, decay constants, or compositions of age standards. These

are sometimes called ‘external’ uncertainties.

It is now common to report U/Pb ages with various levels of

systematic uncertainties included, for example as a 206Pb/238U

date of 123�4/5/6, where 4 is the internal or random uncer-

tainty, 5 is the uncertainty including the tracer calibration or

standard age, and 6 is the uncertainty including decay constant
uncertainties (Figure 12). When comparing 206Pb/238U dates

generated from the same lab with the same tracer solution or

primary age standard (assuming it’s homogeneous), one

should use 123�4. When comparing to another 206Pb/238U

date determined using a different tracer solution or age stan-

dard, 123�5 is appropriate. When comparing to another dat-

ing method, such as 40Ar/39Ar, 123�6 would be the

appropriate date to use.

Here the standard distinction between precision and accu-

racy is used: precision is a reflection of the reproducibility of an

experiment, for example, the consistency of isotopic ratios

measured from a single analysis on a mass spectrometer or

calculated/derived precision through a weighted mean of nu-

merous analyses; accuracy is a qualitative estimate of how well

the mean and quoted uncertainty overlap the ‘true value.’

(Note that this definition of accuracy, though widely used in

the geochronology literature, is slightly different than that

recommended by the International Vocabulary of Metrology

(VIM, 2012). In that terminology, accuracy is also affected by

the precision of the measurement – i.e., a more precise estimate

that overlaps with the true value is also more accurate than a

less precise one. The standard use of accuracy in geochronology

makes no reference to whether or not the measurement or date

is precise, but simply whether it agrees with the true value – this

definition more closely resembles what VIM (2012) refers to as

‘trueness.’) Precision is easier to measure than accuracy, be-

cause the latter involves both how well the quoted ratio or date

reflects that of the sample (which is usually unknown for

geologic studies) and how one interprets the data in terms of

its geologic significance. The quoted uncertainties on dates of

each method discussed earlier and shown in Figure 9 are

largely a gauge of the precision of the method. Whether those

dates are actually accurate within that quoted precision is a

separate issue, and is best addressed by measurement of simi-

larly behaving standards. The example of a secondary standard

was given for the in situ techniques as a means of deriving the

correct precision for each analysis, but also helps address the

accuracy. This leads to a final but important point, and that is

the distinction between dates and ages. It is common to use the

term date to reflect a number derived from solving eqns [6]–[8]

for t, time. A date has no geologic significance until it is inter-

preted in terms of a process, at which point it becomes an age.
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An age is therefore an interpretation of a date, or set of dates,

and these interpretations are discussed further later in the

chapter. Examples of ages that will arise are crystallization

ages, eruption ages, cooling ages, etc. Both dates and ages can

be precise or imprecise, accurate or inaccurate.
4.10.5.2 Isotopic Composition of Natural U

The 238U/235U of natural uranium in most terrestrial materials

has been assumed to be constant and equal to 137.88 for 30

years. This value was adopted by Steiger and Jäger (1977),

citing measurements from Cowan and Adler (1976) from a

variety of uranium ore deposits. Recently, deviation of
238U/235U¼137.88 of up to �1% has been observed in low-

temperature environments and crustal rocks, which may be the

result of temperature-dependent mass fractionation, kinetic

effects, or redox-sensitive partitioning (Bopp et al., 2009;

Brennecka et al., 2011; Stirling et al., 2007; Weyer et al., 2008).

Excess 235U, measured in refractory inclusions in chondritic

meteorites, has been attributed to decay of the short-lived

nuclide 247Cm in the early solar system (Brennecka et al., 2010).

Recent efforts in the ID-TIMS U–Pb dating community have

been directed at determining the natural composition of U

with reference to quantifiable SI units (e.g., kilogram, Becque-

rel, seconds). Directly applicable to U–Pb geochronology of

crustal processes, Hiess et al. (2012) measured 238U/235U in

zircon, titanite, monazite, apatite, xenotime, baddeleyite, and

uraninite, relative to a 233U–236U tracer solution that was well

calibrated gravimetrically (Condon et al., 2010; Richter et al.,

2008). They found variability within these minerals of	1%,

and suggested that a value of 137.818�0.045 be adopted for

use in zircon geochronology.

The value of 238U/235U appears in several places during the

calculation of an age. Most notable is its importance in the Pb–

Pb age equation (eqn [9]), but this assumed value is also often

used during mass spectrometry to correct for mass-dependent

fractionation, for example during TIMS analyses with a
233U–235U tracer (see Section 4.10.4.1). Some analysts using

low-precision dating techniques (see Section 4.10.4) or doing

isotope dilution with a 233U–236U tracer do not even measure
235U during mass spectrometry because of its low abundance,

and thus assume a 238U/235U value of 137.88 to calculate
207Pb/235U dates. Adoption of a new 238U/235U value of

�137.82 could shift 206Pb/238U dates by as much as 0.03%

for young samples, but is unimportant for old samples;
207Pb/235U dates can shift by as much as 0.07% for young

samples and as little as 0.01% for samples >4 Ga (Hiess

et al., 2012). Importantly, the 207Pb–206Pb dates from meteor-

ites, used to calculate the age of the solar system and Earth,

have been measured independently as well, resulting in Pb–Pb

date increases by up to 1.4 Ma (Amelin et al., 2010).
4.10.5.3 U and Th Decay Constants

The uncertainties in decay constants are an important source of

systematic uncertainty that affects the accuracy of U–Pb dates

in absolute time, and also limits the precision to which U–Pb

dates can be compared to dates from other radioisotopic sys-

tems. The uranium decay constants recommended for use by

Steiger and Jäger (1977) were determined by Jaffey et al. (1971)
by alpha counting methods on separate aliquots of enriched
235U and 238U, and were given 2s uncertainties of �0.137 and

�0.107%, respectively. These are by far the most precisely

determined decay constants used in geochronology. Addition-

ally, the accuracy of these numbers has been verified indirectly

by U–Pb geochronology of closed-systemminerals (Mattinson,

2000, 2010; Schoene et al., 2006). This can be done if a set of

analyses are statistically equivalent in concordia space and the

mineral remained a closed system. By using minerals with

negligible Pbc, eqns [6] and [7] can be solved for t and set

equal to one another, and rearranged to

l235
l238

¼
ln

207Pb∗

235U
þ 1

� �

ln
206Pb
238U

þ 1

� � [13]

Equation [13] shows that minerals with very different ages

should all give the same solution for the ratio of the uranium

decay constants if the analyses are truly concordant (Mattinson,

2000), and that this ratio can be calculated with very high

precision using multiple analyses. Such exercises have shown

that this ratio is correct to within the�2s uncertainty quoted by

Jaffey et al. (1971), but that systematic discordance in the U–Pb

system of about 0.3% exists within analyses spanning >3 Ga,

suggesting that one or both of the mean values of the uranium

decay constants are inaccurate (Figure 13). Though the alpha

counting data for 238U from Jaffey et al. (1971) appear more

robust at face value, it is impossible to determine whether the

inaccuracy exists in one or both of the decay constants. None-

theless, these studies use l238 to calculate a new l235, such that
207Pb/235U dates can be compared directly to 206Pb/238U dates

without propagating decay constant uncertainties, though each

of these studies cautions against its use given other outstanding

sources of uncertainty (Mattinson, 2000, 2010; Schoene et al.,

2006). For example, as discussed by Mattinson (2010), the

calculated l235 is also dependent on the assumed value of
238U/235U¼137.88. Using the value of 137.818�0.045 sug-

gested by Hiess et al. (2012) would change the calculated l235
by �0.03%, though, as discussed in that paper (Figure 13), a

single study with full traceability to SI units needs to be carried

out before new values of l235 are adopted for use in geochro-

nology. Furthermore, increasing the absolute resolution of

U–Pb geochronology beyond the 0.1% level and/or verification

of the accuracy of the l238 value from Jaffey et al. (1971) requires

further counting experiments.

The 232Th decay constant suggested by Steiger and Jäger

(1977) has a value of 4.948
10�11 (year�1) with an uncer-

tainty of �1%, and comes from an abstract (Le Roux and

Glendenin, 1963) with minimal documentation. Sparse U–

Th–Pb data are at least near a 208Pb/232Th–207Pb/235U concor-

dia curve (e.g., Villeneuve et al., 2000), giving some support to

its accuracy. Amelin and Zaitsev (2002) recalculated l232 by

correcting 208Pb–232Th apatite dates to zircon and baddeleyite
206Pb/238U dates, and obtained a value of 4.934
10�11

(year�1)�0.3%. Though some workers are using this value

currently, a Th–Pb/U–Pb study with similar rigor to those

cited for the U decay constants is warranted.

Regardless of the magnitude of the uncertainties of the

decay constants, and until these constants are perfectly
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intercalibrated, it is important that decay constant uncer-

tainties are considered when comparing 207Pb/235U,
206Pb/238U, and 207Pb/206Pb dates to each other. It is also

important that, when using intercept dates and the concordia

age (Ludwig, 1998, 2000a), one propagates the uncertainties in

both U decay constants, because these calculations use both

decay schemes (Begemann et al., 2001; Schoene et al., 2006)
and thus both would change with adoption of a new 235U

decay constant. Also important is that studies utilizing only

one decay constant need not propagate its uncertainty to cal-

culate durations of, or intervals between, different events.
4.10.5.4 Tracer Calibration

As outlined in Section 4.10.4.1, the process of isotope dilution

involves mixing a solution of known U/Pb with preferably

nonnaturally occurring U and Pb isotopes with each unknown

sample in order to calculate the U/Pb ratio of the sample. A

U–Pb date determined by ID-TIMS is therefore no more accu-

rate than the measured U/Pb of the tracer solution used. Be-

cause 202Pb and 205Pb are not available in large quantities and

are difficult to obtain (Parrish and Krogh, 1987), it is impossi-

ble to mix the U/Pb tracer gravimetrically with high precision

(i.e., by weighing aliquots of pure monoisotopic Pb). Instead,

the tracer is calibrated against solutions of precisely deter-

mined U/Pb ratio and isotopic composition created by weigh-

ing high-purity metallic U (�Th) and Pb isotopic standards,

then dissolving them together in the same acid. The tracer is

preferably calibrated against multiple independently mixed

gravimetric solutions (Schoene et al., 2006). Though most

laboratories quote �0.1% precision as a tracer uncertainty for

home-made tracers, the methodology and data of the calibra-

tions are not usually given. As part of the EARTHTIME initiative

(www.Earth-time.org), a large aliquot of freely available mixed

(202Pb–)205Pb–233U–235U tracer was mixed and calibrated

with the goal of quantifying all known sources of uncertainty

back to SI units. The results indicate that the limiting sources of

uncertainty in tracer calibration are the isotopic composition

and purity of uranium and lead isotope standards (Condon

et al., 2010; Todt et al., 1996), in addition to uncertainties in

mass spectrometry; these amount to �0.03% uncertainty in a
206Pb/238U date. This is predominantly a systematic source of

uncertainty, which need not be propagated into an age when

compared to other U–Pb ages determined using the same tracer

solution.
4.10.5.5 ‘Geologic’ Uncertainty

As described in Section 4.10.3, mixing, Pb loss, intermediate

daughter product disequilibrium, and incorrect Pbc subtrac-

tion are all ways of jeopardizing the accuracy of a U–Pb date

if not corrected for or interpreted correctly. These ‘geologic’

phenomena can act as either random or systematic uncer-

tainties on a given sample or dataset. For example, a set of

minerals with ubiquitous inherited cores that go unrecognized

will bias each analysis, so that calculated dates are too old.

Unremediated Pb loss will bias ages in the opposite direction;

although each grain will be too young by a different amount,

the net effect is a systematic bias toward younger dates. As

described in Section 4.10.3.1, grain polishing and imaging

prior to analysis by in situ methods is a common way to

avoid systematic bias by inheritance. However, recent work

documenting the timescales of mineral growth in magmatic

systems shows that it may be common for minerals with high

closure temperatures (e.g., zircon, monazite, and allanite) to

grow over tens of thousands to millions of years without

obvious textural evidence (Bachmann et al., 2007; Miller

http://www.Earth-time.org
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et al., 2007; Schaltegger et al., 2009; Schmitt et al., 2010,

2011). Such extended growth periods can present subtle but

important uncertainty in age interpretations if the goal is, for

example, to date the timing of eruption of an ash bed or

intrusion of a magma. This problem is an important source

of systematic error when taking weightedmeans of many dates,

which will be discussed in Section 4.10.5.6.

Accessing domains of closed-system zircon that has not un-

dergone Pb loss was revolutionized byMattinson (2005)with the

advent of ‘chemical abrasion’ (CA)-ID-TIMS (Figure 14). This

method involves annealing zircons prior to partial dissolution

in HF acid to preferentially remove high-U, discordant domains

of zircon (Figure 14(a) and 14(b)). The resulting residue is then

rinsed, spiked with a U/Pb tracer, and analyzed by TIMS. The

original work of Mattinson (2005) involved a step-leaching tech-

nique on large aliquots of zircon in order to show that after a few

leaching steps, the dates measured in the leachate reach a plateau

and effectively represent closed-system zircon (Figure 14(c)).

In order to adapt this method to single-grain zircon ID-TIMS
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Figure 14 Chemical abrasion ID-TIMS (CA-TIMS) and its effect on zircon di
annealed and leached in HF overnight. Note preferential, nonsystematic dissol
(b) A cathodoluminescence image of a zircon following chemical abrasion, w
dissolve a high-U domain (Mundil et al., 2004). (c) An example of the step-le
method. Each cumulative 238U fraction (x-axis) is leachate removed from the
followed by many steps of equivalent-aged analyses, implying concordance. (d
showing air-abraded grains with substantial Pb loss versus chemically abrad
work, Mundil et al. (2004) performed an aggressive 12-hour

leaching step on single zircons following annealing (Figure

14(a)). This method has been adopted by most ID-TIMS U–Pb

labs, and has all but replaced the air-abrasion method of Krogh

(1973) after 30 years of uncontested service.

During those three decades, several studies examining

leaching of metamict zircon were carried out, but without the

annealing step they were unsuccessful and even induced open-

system behavior, such as fractionation of 207Pb from 206Pb

(Chen et al., 2002; Davis and Krogh, 2000; Krogh and Davis,

1975; Mattinson, 1994). CA-TIMS has made ultrahigh-

precision Pb–Pb dating of concordant zircons possible in

Archean terranes, where Pb loss is both ubiquitous and obvi-

ous (Das and Davis, 2010; Schoene and Bowring, 2007, 2010;

Schoene et al., 2008), but has also instilled greater confidence

in U–Pb dates in Phanerozoic samples where a Pb loss trajec-

tory is masked because it parallels concordia. Studies spanning

the CA-TIMS revolution provide stunning comparisons of

air-abraded and chemically abraded zircon, with the latter
Cumulative 238U fraction
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Sample 5: early cretaceous sierran
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ution of discordant domains within the crystal (from Mundil et al., 2004).
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aching procedure used by Mattinson (2005) to develop the CA-TIMS
residue after a short leaching step. Note the initial discordance that is
) A typical example of single-stage CA-TIMS from Lehrmann et al. (2006),
ed grains that are more uniform in age. All uncertainties are 2s.
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consistently yielding older dates that are more likely to pro-

duce homogeneous clusters with a single 206Pb/238U date

(Bowring et al., 2007; Mundil et al., 2004; Ovtcharova et al.,

2006; Ramezani et al., 2007; Schoene and Bowring, 2006;

Figure 14(d)). However, the technique is not perfect, espe-

cially when small sample size requires selection of imperfect

(cloudy, cracked, magnetic, etc.) zircons for analysis, or in very

metamict zircon (Das and Davis, 2010; Schoene et al., 2008,

2010a). Attempts to extend CA-TIMS to other minerals such as

baddeleyite and monazite have not yet been as successful at

remediating open-system behavior but have revealed interest-

ing characteristics of these minerals during annealing and par-

tial dissolution (Peterman et al., 2012; Rioux et al., 2010).

Given the looming possibility that subtle residual Pb loss

may remain in some zircon populations following CA-TIMS,

open-system behavior in the form of Pb loss and prolonged

zircon growth remain important sources of inaccuracy in U–Pb

geochronology. Because of the different strengths of the three

analytical techniques outlined earlier, understanding age infor-

mation from minerals with complicated growth histories or

subsequent Pb loss can be aided by using both high spatial

resolution and high-precision techniques on the same grains.
4.10.5.6 Statistical Models

The previous discussion has focused entirely on the precision

and accuracy of single dates arising from ID-TIMS, SIMS, and

LA-ICPMS U–Pb geochronology. It is common, however, to

pool many analyses from a single sample and apply statistical

models to (1) increase the precision of an age interpretation,

and (2) account for analytical scatter in the dataset. The two

most commonly used statistical models in geochronology are

the least-squares linear fit, such as an isochron, and a weighted

mean. Both 2D and 3D isochrons are used in U–Pb geochro-

nology and the assumptions they require are listed in Section

4.10.2.3.1. Assuming that it is geologically reasonable for these

assumptions to be met, the accuracy of the age obtained from

linear regression is typically evaluated by the goodness of fit.

Of particular importance in isotopic data is that linear regres-

sions can account both for the uncertainties in x and y vari-

ables, but also for the covariance of those uncertainties, as

these variables are usually ratios with common numerators or

denominators. A successful and widely used approach to this

problem was presented by York (1967, 1968), and is com-

monly called the York fit. Variations and improvements on

this method have been published (e.g., Brooks et al., 1972;

Ludwig, 1991, 1998; York et al., 2004), and freeware exists for

performing such calculations on a number of different types of

geochronologic data (the most important and versatile being

ISOPLOT; Ludwig, 1991).

In addition to estimates of the slopes and intercepts pro-

vided by these methods, it is critical in geochronology to

evaluate the goodness of fit of the data to the statistical

model, in this case a straight line. Geochronologists typically

use the mean square of weighted deviates (MSWD), first intro-

duced by York (1967, 1968), which is a variation on the

common w2 statistic but which accounts for the degrees of

freedom of the regression. A dataset that matches the statistical

model gives an MSWD of 1, indicating that the scatter around

the best-fit line is consistent with the uncertainties assigned to
the data. An MSWD�1 means the data scatter too much given

the reported uncertainties, which can often be seen visually

when the best-fit line lies far from the uncertainty envelopes,

or ‘error bars,’ around the data. For an isochron, this means

that one or more of the assumptions in Section 4.10.2.3.1 has

not been met.

An MSWD�1 indicates that the uncertainties on the indi-

vidual data are larger than expected given their observed scat-

ter, which is seen on a plot where the best-fit line falls

suspiciously close to the mean of each data point that has

relatively large uncertainties. A very low MSWD may result

from inappropriate propagation of systematic uncertainties

into individual data points. Though it may appear to be a

conservative approach to overestimate uncertainties, doing so

canmask real systematic geologic uncertainty, and this, in turn,

can bias a linear regression toward steeper or shallower slopes

(and therefore different ages). An argument describing the

acceptable distribution of MSWDs for a given number of data

points used to fit a line is made by Wendt and Carl (1991), and

is given by the following simple equation:

sMSWD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

N � 2ð Þ

s
[14]

Though this model is not rigorously adhered to in the

literature, it provides an important guide for those wishing to

better understand the distribution of their data in the hope of

more accurately determining uncertainties and geologic

interpretations.

In modern U–Pb geochronology, the weighted mean is the

statistical model most often applied to a set of individual

analyses, and the result is often interpreted as the best estimate

of the age of a sample. The underlying assumption in weighted

mean calculations is that the data represent a single value and

that the variance of the means is due entirely to analytical

scatter. As with the York fit, the uncertainties of individual

data are weighted by the inverse of their variance, so those

data with larger uncertainties have less weight (though see

McLean et al. (2011) for an approach that accounts for system-

atic uncertainty, and can result in negative weights!). The result

is the best estimate of that true value given the dispersion in the

means and their associated uncertainties. Again, an MSWD can

be calculated to assess whether the data do in fact meet the

model prediction (though eqn [14] should be modified so the

denominator reads N � 1.). This can be visually estimated by

simply seeing whether a set of data points overlap within their

2s uncertainties. A common tool to do so, colloquially called

the ‘weighted mean plot,’ plots on one axis a date or ratio and

successive analyses are lined up on the other axis (Figure 15).

A weighted mean functions much like the standard error in

that it asks the question: how well do we know the mean? As

such, the uncertainties in the estimate of the mean are reduced

by 1/N1/2 (if the data have comparable uncertainties), meaning

the more data you have, the better you know the mean of those

data. It is thus a way to increase the precision of an age

interpretation when the individual dates have larger uncer-

tainties. Use of the weighted mean can, however, result in

inaccurate ages if the mean of the samples does not reflect

the (instantaneous) process that is being dated. Assuming

that the petrogenetic origin of the dated minerals is accurately
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analyses, showing that large uncertainties from the SHRIMP likely mask small amounts of Pb loss, leading to a weighted-mean date that is
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interpreted, an inaccurate age can result from a weighted mean

with a statistically significant MSWD if a set of minerals is

subject to ‘geologic uncertainty’ (e.g., Pb loss or mixing)

whose effect is small relative to the uncertainties of individual

data points. This is extremely important, and so two examples

are given in Figure 15.

Pitfalls in interpreting weighted means are most easily

illustrated by comparing low-precision datasets with high-

precision datasets from the same sample. Figure 15(a) com-

pares data from in situ U–Pb zircon geochronology by

SHRIMP (Zhang et al., 2005) and whole-grain zircon ID-

TIMS dating (Condon et al., 2005). The sample is a volcanic

ash bed from the Neoproterozoic Duoshantuo Formation,

which postdates the global Marinoan glaciation event. High-

precision ID-TIMS data were obtained prior to the advent of

chemical abrasion (Section 4.10.5.5) and exhibit a modest

spread in dates, which the authors interpret as Pb loss. As

such, they calculate a weighted mean date from the oldest

homogeneous population of zircons, whose uncertainty in

Figure 15(a) includes a tracer uncertainty of �0.15%. The

SHRIMP data show a single population of statistically
indistinguishable analyses, though a weighted mean results in

a 206Pb/238U age that is resolvably younger than the ID-TIMS

estimate. An argument could be made that, although each

individual SHRIMP analysis is accurate, the weighted mean is

biased by subtle Pb loss toward a mean that is too young.

Another illustration of the complications of applying

weighted means to datasets comes from an ash bed near the

Triassic–Jurassic boundary (Figure 15(b)). In this example, the

authors attempt to correlate the biostratigraphically calibrated

end-Triassic mass extinction event with the onset of flood

basalt volcanism in the Central Atlantic Magmatic Province

(CAMP; Marzoli et al., 1999) from a section in Peru with

abundant volcanic ash horizons. An initial dataset by CA-

TIMS (Schaltegger et al., 2008), for a sample closest to the

extinction horizon, used a 205Pb–235U tracer solution and

reported a homogeneous population of zircon dates that

were used to calculate a weighted mean age for the eruption

of the ash bed. The calculated age is older than the very pre-

cisely dated North Mtn. Basalt – the lowermost basalt in the

CAMP in North America – precluding a causal link. As dis-

cussed by Schaltegger et al. (2008), because the two ages were

Figure&nbsp;15
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determined using a different tracer solution in different labs,

the potential for systematic biases existed.

A subsequent reanalysis of the ash bed using a 202Pb–205

Pb–233U–235U tracer solution (Schoene et al., 2010a) results in

a more precise dataset due to the reduced uncertainty related to

mass fractionation during TIMS analysis. The newer dataset

exhibits a substantial spread in dates that are no longer ame-

nable to a statistically significant weighted mean age. Because

these zircons were analyzed using chemical abrasion, the au-

thors conclude that the spread is due to pre-eruptive zircon

growth rather than Pb loss. Both a weighted mean of the

youngest three analyses (barring one much younger grain,

interpreted as Pb loss) and the youngest single-grain overlap

in age with the eruption age calculated by Schaltegger et al.

(2008), but the new study results in synchronicity with a re-

determined age for the North Mtn. Basalt Schoene et al.

(2010a) conclude that the dataset from Schaltegger et al.

(2008) was subtly biased to appear too old by entrainment of

pre-eruptive zircons in the volcanic ash, which are resolvable

by the more precise dataset.

These two examples illustrate how the application of

weighted means to both low- and high-precision datasets

must be done with scrutiny. It is commonly known that the

growth of high-U minerals and subsequent Pb loss or alter-

ation can happen on timescales that are unresolvable at present

by any geochronologic technique. Increasing precision in

U–Pb datasets is usually met by increasing complexity in the

resulting dates, and it has been shown repeatedly that arriving

at high-precision ages through weighted means of many low-

precision dates can be inaccurate due to unrecognized system-

atic bias. As such, the ultimate temporal resolution of U–Pb

geochronology is limited by the precision of a single data point

(Horstwood, 2008; Ludwig, 1991; Sylvester, 2008). For ID-

TIMS, this precision is now similar in magnitude to the sys-

tematic uncertainties of decay constants and tracer calibration

(Figure 12), but there is much room for improved precision

with in situ methods before similar systematic uncertainties

become limiting factors.
4.10.6 Applications: The Present and Future of U–Th–
Pb Geochronology

4.10.6.1 Measuring Geologic Time and Earth History

Changes in the biosphere, atmosphere, hydrosphere, and the

surface environment through Earth history are recorded within

sedimentary rocks. Correlating disparate stratigraphic records

with each other and with events in the solid Earth system

requires high-precision geochronology. This is typically carried

out by dating igneous minerals from volcanic tuffs that are

intercalated in sedimentary strata (Tucker et al., 1990), thus

providing an anchor in absolute time. These tie points also

form the temporal framework of the geologic timescale

(Gradstein et al., 2004). The periods, epochs and stages that

comprise geologic time rely heavily on U–Pb geochronology

for time constraints; the demand for absolute time and the

abundance of U–Pb data dedicated toward this end are steadily

increasing (Bowring and Schmitz, 2003; Bowring et al., 2006;

Condon et al., 2005; Davydov et al., 2010; Furin et al., 2006;

Hoffmann et al., 2004; Macdonald et al., 2010; Mazzini et al.,
2010; Meyers et al., 2012; Mundil et al., 2003, 2004; Ovtcharova

et al., 2006; Ramezani et al., 2007; Schaltegger et al., 2008;

Schoene et al., 2010a; Smith et al., 2010).

Timescale geochronology requires the highest precision and

accuracy, and therefore single-zircon ID-TIMS U–Pb dating is

frequently the method of choice (Bowring and Schmitz, 2003;

Bowring et al., 2006; Ireland and Williams, 2003). However,

eruption ages determined by U–Pb ID-TIMS should also be

subjected to considerable scrutiny. One example is the very

subtle but important differences arising from increased preci-

sion and application of statistical models to ash bed zircon

populations near the Triassic–Jurassic boundary discussed in

Section 4.10.5.6 and shown in Figure 15(b). A further exam-

ple arises from the Permian–Triassic boundary, as dated by ID-

TIMS, which has yielded four different nonoverlapping
206Pb/238U ages in the last 14 years from the same stratigraphic

section in Meishan, China: 251.4�0.3 Ma (Bowring et al.,

1998), >253 Ma (Mundil et al., 2001), 252.6�0.2 Ma

(Mundil et al., 2004), and most recently 252.17�0.08 Ma

(Shen et al., 2011; uncertainties do not include tracer calibra-

tion or decay constant contributions). While this evolving

dataset is undoubtedly related to analytical improvements

such as a switch from multigrain to single-grain analyses, ap-

plication of CA-TIMS, decreased Pb blanks, and improved

mass spectrometry, discrepancies may also be related to zircon

selection, ash bed sample size and heterogeneity, Pb loss and

inheritance in zircon populations, unresolved systematic errors

biasing weighted mean calculations, and other interlaboratory

biases. Interlaboratory bias is being actively addressed by the

ID-TIMS community through interlaboratory calibration stud-

ies and distribution of freely available U–Pb tracer solutions to

remove tracer bias (Condon et al., 2008). Recent studies carry-

ing out high-precision comparison on homogeneous zircon

populations show that agreement to better than 0.05% of the

age is achievable on weighted means between multiple labo-

ratories (Schoene et al., 2010a; Slama et al., 2008). However,

for complicated datasets exhibiting considerable scatter in

dates – as is becoming the norm – different geochronologists

use different techniques to interpret an eruption age from a set

of dates. Those who think a combination of Pb loss,

inheritance, and analytical scatter are the most important

sources of error extract the most statistically equivalent popu-

lations of zircons and apply weighted means (Davydov et al.,

2010; Ramezani et al., 2007; Shen et al., 2011). Those who

consider pre-eruptive growth of zircon as the source of the

spread in dates focus on the youngest grain or subset of youn-

gest grains from an ash bed as the best estimate of the eruption

age (Meyers et al., 2012; Schmitz and Davydov, 2012; Schoene

et al., 2010a). The latter approach has also been applied when

significant reworking of ash material is suspected after initial

eruption and deposition (Irmis et al., 2011).

How best to interpret complicated zircon populations in ash

beds in the Mesozoic and Paleozoic can be aided by investiga-

tions of younger volcanic material where analytical uncertainty

can be smaller relative to the observed spread in dates and

significant Pb loss is not expected. Such studies using both U–

Pb and U-series dating have revealed that, in some cases, all

zircon in a magmatic system crystallizes in less than a few thou-

sand years prior to eruption (Bachmann et al., 2010; Charlier

and Wilson, 2010; Crowley et al., 2007; Schmitt et al., 2011),
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while other tuffs contain zircon predating eruption by several

hundred thousand to millions of years (Bachmann et al., 2007;

Bacon and Lowenstern, 2005; Charlier et al., 2005; Claiborne

et al., 2010; Schmitt et al., 2010). In all cases, it is important that

a subset of zircondates overlapwith the eruption age,whichmay

be estimated by 40Ar/39Ar or U–Th/He geochronology ormay be

known from historical records. It follows that in the absence of

Pb loss, from a set of>10 ID-TIMS single-zircon dates from pre-

Cenozoic ash beds, it is likely that the youngest one will overlap

with the eruption age. Nonetheless, recent studies confirm that

CA-TIMS is not 100% effective at eliminating Pb loss (Meyers

et al., 2012; Schmitz andDavydov, 2012; Schoene et al., 2010a),

which must be addressed by using large datasets (Shen et al.,

2011) and taking advantage of the requirement that strata must

get younger upward (Davydov et al., 2010; Guex et al., 2012;

Meyers et al., 2012; Mundil et al., 2004; Schmitz and Davydov,

2012). Further understanding of zircon populations and increas-

ing confidence in weighted mean calculations will come from

integrating zircon textures and geochemistry with high-precision

geochronology of ash bed zircons (Claiborne et al., 2010;

Crowley et al., 2007; Schoene et al., 2010b, 2012).

U–Pb geochronology will undoubtedly play a large role in

the further refinement of the geologic timescale (Gradstein

et al., 2012). Data from the U–Pb system will be further inte-

grated with other radioisotopic systems and results from or-

bital tuning (Kuiper et al., 2008; Meyers et al., 2012; Renne

et al., 1998, 2010), along with bio-, chemo-, litho-, and

magnetostratigraphic information, and increasingly higher-

precision data will be required to address more specific

hypotheses. Highlights include testing correlations between

biostratigraphically calibrated mass extinction events and

large igneous province eruptions, intercalibrating U–Pb data

with potential Milankovitch cyclicity in orbitally tuned sec-

tions, measuring the tempo of the radiation of complex life

in the early Paleozoic, and understanding the relationship

between carbon cycling and glacial events. Continuing to in-

crease precision in deposition ages for ash beds without

sacrificing accuracy will require further work understanding

the growth of zircon in magmatic systems and how it is trans-

ported during eruptive cycles and subsequent deposition.
4.10.6.2 Integration of Geochronology, Geochemistry, and
Petrology

The accuracy of U–Th–Pb ages depends, in part, on correctly

interpreting the meaning of a date, which can be aided by

geochemical and/or petrographic information about the

dated material. Such information provides a crucial context

for generating pressure–temperature–time paths in metamor-

phic rocks by tying the growth of high-U accessory minerals to

phase equilibria (see also Chapter 4.7). Geochemical and

textural context can also be important for interpreting the

timescales of igneous petrogenesis (see also Chapter 4.5).

The ability of nondestructive in situ methods of U–Th–Pb

geochronology has paved the way for this type of work through

combining multiple analytical methods on single minerals

with high spatial resolution. Integration of petrographic and

geochemical data with ID-TIMS U–Th–Pb geochronology is

logistically more challenging, often less direct, and more
limited by sample size, but nonetheless essential if high-

precision time constraints are necessary.

Though zircon zonation has served as a useful tool for

deciphering metamorphic versus igneous growth histories

(Corfu et al., 2003), determining its utility for tracking chang-

ing geochemical equilibria in metamorphic and igneous sys-

tems has not been straightforward. It was recognized long ago

that Th/U is often higher in igneous than metamorphic zircon,

and, more recently, rare earth element (REE) patterns in meta-

morphic zircon have been argued to be sensitive to the pres-

ence of garnet, and thus when coupled with geochronology,

could fingerprint garnet growth or dissolution (Harley and

Kelly, 2007; Kelly and Harley, 2005; Rubatto, 2002; White-

house and Platt, 2003). However, measured zircon–garnet–

liquid partition coefficients are highly variable, and relatively

few data documenting the effect of temperature, pressure, and

bulk composition exist (Hanchar and van Westrenen, 2007;

Rubatto and Hermann, 2007). Though several studies suggest

that zircon REE patterns are not sensitive to magma composi-

tion (Hoskin and Ireland, 2000; Hoskin et al., 2000), other

studies have argued that both REE and other trace elements

vary significantly between rock types (Belousova et al., 2002,

2006; Heaman et al., 1990; Schoene et al., 2010b) and can

track evolving magma composition in relative (Reid et al.,

2011) or absolute (Schoene et al., 2012) time.

High-U phosphates (monazite, xenotime, and apatite) and

allanite are involved in a host of metamorphic reactions (Bea

and Montero, 1999; Finger et al., 1998; Spear and Pyle, 2002;

Wing et al., 2003), which, when coupled with geochronology,

can provide time constraints on metamorphism. SIMS U–Th–

Pb dating of monazite preceded by geochemical and textural

characterization has shown that monazite growth and geo-

chemical composition are sensitive to the growth and dissolu-

tion of other high-REE minerals, such as garnet and allanite,

and also to anatexis (Figure 16(a); Gibson et al., 2004; Kohn

and Malloy, 2004; Kohn et al., 2005; Zhu et al., 1997). ID-

TIMS U–Pb dating of chemically and texturally characterized

monazite, xenotime, and allanite is also feasible by removing

grains from thin-section or grain mount and carrying out

targeted microsampling of discreet domains (Corrie and

Kohn, 2007; Hawkins and Bowring, 1997; Lanzirotti and

Hanson, 1996; Romer and Siegesmund, 2003; Viskupic

and Hodges, 2001). LA-ICPMS U–Th–Pb analysis of monazite

is also widespread (Cottle et al., 2009a,b; Kosler et al., 2001;

Paquette and Tiepolo, 2007; Willigers et al., 2002), though

systematic and unexplained errors of up to 5% in monazite
206Pb/238U dates relative to ID-TIMS dates are not yet well

understood (Kohn and Vervoort, 2008). U–Th–total Pb geo-

chronology (Section 4.10.4) of monazite has been used to

map and date geochemical zones at very high spatial resolution

by measuring just elemental abundances of U, Th, and Pb

(Figure 16(d); Cocherie et al., 1998; Montel et al., 1996;

Williams and Jercinovic, 2002). Recently, LA-ICPMS has also

been applied to dating allanite (Darling et al., 2012; Gregory

et al., 2007) and apatite (Chew et al., 2011), which are impor-

tant in a wide range of igneous rocks and participants in numer-

ous metamorphic reactions (Spear, 2010; Spear and Pyle, 2002).

SIMS and LA-ICPMS have been used to characterize meta-

morphic reactions involving titanite, which had previously

been known to form multiple populations in single hand
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samples (Corfu and Stone, 1998; Frost et al., 2000; Verts et al.,

1996). Aleinikoff et al. (2002) identified multiple generations

of metamorphic titanite based on geochemistry and SIMS

U–Pb analysis. Storey et al. (2007) conducted a similar study

using LA-ICPMS on titanite, rutile, and apatite and argued

that multiple chemically distinct zones in titanite recorded a

protracted growth history.

A relatively new development is the application of mineral

thermometry directly to high-U minerals. These thermometers

are calibrated both empirically and experimentally and posit
that the concentration of certain elements partitioned into a

mineral structure is a strong function of temperature, assuming

equilibrium partitioning and negligible subsequent loss or gain.

An example is the Ti-in-zircon thermometer (Figure 16(b); Ferry

andWatson, 2007;Watson et al., 2006), which has been applied

to Earth’s oldest zircons as a means of understanding crustal

genesis (Watson and Harrison, 2005), and also to a wide range

of magmatic and metamorphic systems. This tool is most com-

monly applied by in situ methods because both temperature

and date can be measured on the same growth zone within
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single zircons. A limitation to its accuracy is that the activity of Ti

in the melt must be assumed, measured, or argued to be unity,

for example if cogenetic rutile is present (Ferry and Watson,

2007). Furthermore, there is evidence that Ti partitioning into

zircon may be controlled by factors other than temperature, for

example nonequilibrium partitioning, pressure, or magma com-

position (Fu et al., 2008; Hofmann et al., 2009). Other ther-

mometers such as Zr-in-rutile (Ferry and Watson, 2007; Zack

et al., 2004) and Zr-in-titanite (Hayden et al., 2008) will also be

powerful tools for relating temperature to time, though these

systems are more sensitive to pressure and subsequent Zr diffu-

sion (Cherniak, 2006; Cherniak et al., 2007). Nonetheless, there

is potential for combining these thermometers with U–Pb

thermochronology and geochronology to elucidate high-

temperature thermal histories that are inaccessible by thermo-

chronology alone (Blackburn et al., 2012b; Meinhold, 2010).

Certainly with the number of labs now interested in con-

ducting LA-ICPMS U–Pb geochronology on non-zircon min-

erals, new insight will be gained into the growth and cooling

histories they record (e.g., Gao et al., 2011; Li et al., 2010; Poujol

et al., 2010). Advances in this field will arise frommore seamless

integration of geochemical data with geochronological data

from the exact same volume of analyzed material. One method

recently developed is to split the aerosol stream arising from

laser ablation and feed it into two ICPMSs – one for geochem-

ical analysis and a multicollector instrument dedicated to U–Pb

and Hf isotopic measurements (Yuan et al., 2008). Methods

integrating ID-TIMS U–Pb measurements with trace element

analysis by solution ICPMS (ID-TIMS-TEA) from the same vol-

ume of material can provide geochemical data coupled with

high-precision dates (Schoene et al., 2010b, 2012), which

build on previous efforts that retain aliquots containing isotopes

and elements during ion separation chemistry for subsequent

analysis (Amelin, 2009; Amelin et al., 1999; Crowley et al.,

2006; Heaman et al., 1990; Lanzirotti and Hanson, 1996).

These latter techniques emphasize the importance of integrating

multiple methods – high spatial resolution with high temporal

resolution (Figure 16(d)) – to gain a richer understanding of the

geochemical, structural, and thermal history of rocks with time.
4.10.6.3 Detrital Zircon Analysis

LA-ICPMS provides a fast and affordable way to generate a

huge amount of U–Pb isotopic data, which is ideal for charac-

terizing complex detrital zircon populations (Fedo et al.,

2003). Because of the availability of and excitement for detrital

zircon studies, one may speculate that the sharp increase in

U–Pb publications relative to other geochronologic methods

shown in Figure 1 is strongly influenced by this application.

Gehrels (2011) outlines three main motivations for detrital

zircon studies: (1) to characterize the provenance of sediment

compared to known sources, (2) to correlate sedimentary

units, assuming identical provenance, and (3) to quantify the

maximum depositional age of strata in the absence of datable

volcanic material.

Provenance studies have proven useful in paleogeographic

reconstructions, identifying tectonically induced drainage

pattern switches, placing time constraints on uplift, and fin-

gerprinting pulses of magmatism (e.g., Bruguier et al., 1997;

DeGraaff-Surpless et al., 2002; Dickinson and Gehrels, 2003;
Ireland et al., 1998; LaMaskin, 2012; Rainbird et al., 1992;

Stewart et al., 2001). Using detrital zircons to correlate sedimen-

tary strata has been a powerful tool for paleogeographic recon-

structions (Murphy et al., 2004) andhas led to improved tectonic

models for orogenic belts such as the Himalaya, where the

difficulty of correlating sedimentary sequences along strike has

hindered an understanding of precollision basin geometries

(DiPietro and Isachsen, 2001; Gehrels et al., 2003; Long et al.,

2011; Myrow et al., 2009).

In the absence of datable ash beds, detrital zircon geochro-

nology can provide maximum ages for deposition of sedimen-

tary strata (Robb et al., 1990), which is aided by analyzing a

large number of zircons (e.g., >100) and thus is not ideally

done by ID-TIMS (Dickinson and Gehrels, 2009; Hervé et al.,

2003). In studies where higher-precision time constraints are

required, it is possible to target the youngest zircon population,

identified by LA-ICPMS or SIMS, for ID-TIMS analysis.

Despite the successes of detrital zircon analysis, several

challenges still remain. There is currently no consensus on

the best way to interpret detrital zircon spectra in terms of the

significance of peak heights (when plotted on probability den-

sity function diagrams; Figure 17), differences in the relative

abundances of peaks between samples in stratigraphic succes-

sion, or what statistics can be applied to spectra (Gehrels,

2011). Furthermore, several recent studies on modern sedi-

ments highlight the impact that biased provenance sampling,

especially with low sampling resolution (Hietpas et al., 2011b;

Moecher and Samson, 2006), and grain-size sorting during

sediment transport can have on depositional age interpretations

Figure&nbsp;17


368 U–Th–Pb Geochronology
(Hietpas et al., 2011b). As workers continue to decide how to

interpret detrital zircon spectra quantitatively and apply statisti-

cal models to these data, equal effort could be applied to un-

derstanding these sources of ‘geologic’ bias. The addition of

other detrital minerals such as monazite will also likely play

a role in deciphering ages and provenance of sedimentary units

(Hietpas et al., 2010, 2011a; Suzuki and Adachi, 1994; White

et al., 2001).

The abundance of detrital and bedrock zircon U–Pb data

produced by in situ methods, especially when coupled with

isotopic tracers such as Hf and O, has also supplied new

constraints on the rates andmechanisms of continental growth

through Earth history (see also Chapter 4.11). Tens of thou-

sands of zircon U–Pb (Figure 17) and Hf analyses have been

used to spark debates about pulsed continental growth versus

preservation bias, and growth models such as subduction ver-

sus plume-related crust production (Belousova et al., 2010;

Condie et al., 2009, 2011; Dhuime et al., 2012; Hawkesworth

and Kemp, 2006; Lancaster et al., 2011; Voice et al., 2011).

4.10.6.4 Lithospheric Thermal Evolution Through U–Pb
Thermochronology

The U–Th–Pb system has the unique quality that several high-

U minerals undergo significant diffusive loss of Pb at mid- to

lower-crustal temperatures, but become retentive near Earth’s

surface (Figure 18(a)). These minerals may therefore be

exploited for U–Pb thermochronology, which is based on

temperature-sensitive volume diffusion of Pb through the crys-

tal lattice. Diffusion kinetics of Pb have been determined exper-

imentally (Cherniak, 1993; Cherniak and Watson, 2000, 2001;

Cherniak et al., 1991), yielding nominal closure temperatures

(Tc; Dodson, 1973, 1986) for apatite (Tc¼450–550 �C), rutile
(Tc¼400–500 �C; though see Blackburn et al., 2012b, whose

values are used in Figure 18; Schmitz and Bowring, 2003a), and

titanite (Tc¼550–650 �C; Figure 18(a)). These are broadly con-
sistent with empirical measurements and intercalibration with
40Ar/39Ar dates in hornblende (Tc¼450–550 �C; Harrison,

1981). The relatively high closure temperatures of these min-

erals make them suitable to track mid- to lower-crustal cooling

and exhumation over billions of years (Figure 18(b)).

Early workers recognized that titanite and apatite could be

robust U–Pb geochronometers (Catanzaro and Hanson, 1971;

Hanson et al., 1971; Oosthuyzen and Burger, 1973; Tilton and

Grunenfelder, 1968), but more widespread application of

these minerals for calibrating postorogenic cooling and exhu-

mation was not employed until much later (Corfu, 1988;

Corfu et al., 1985; Mezger et al., 1989, 1991; Tucker et al.,

1986). Mezger et al. (1989) recognized that rutile dates were

grain size-dependent, as predicted by Dodson (1973), suggest-

ing that volume diffusion was the primary mechanism of Pb

loss in this mineral, allowing more quantitative analysis of

temperature time paths in this system. Kooijman et al. (2010)

measured age gradients within single rutiles by LA-ICPMS in

support of volume diffusion as the Pb loss mechanism, and

calculated time-dependent cooling histories of <1 �C My�1

during post-Grenvillian stabilization in eastern Canada.

Chamberlain and Bowring (2000) measured U–Pb cooling

ages in apatite and titanite across several terranes in the western

United States and also calculate very slow cooling rates of
<0.3 �C My�1 following �1.4 Ga continental assembly.

Hawkins and Bowring (1999) exploited the variation of age

with grain size in titanite to extract quantitative temperature–

time histories during �1.6 Ga post-metamorphic cooling

paths in the Grand Canyon, USA. This property was also uti-

lized by Schoene and Bowring (2007) in both apatite and

titanite from the same �3.2 Ga rock in Swaziland, and they

used a finite-difference forward-diffusion model to derive a

unique nonlinear T–t path during exhumation from the

lower to the upper crust. These studies are consistent with

models for long-term structural and thermal resilience of cra-

tonic lithosphere (Artemieva, 2011; Jordan, 1988), though

rocks collected at the surface often do not capture the more

recent thermal history of the middle and lower crust, required

to address the importance of lithospheric reheating events

(Heizler et al., 1997; Schmitz and Bowring, 2003b; Shaw

et al., 2004).

In a novel application of U–Pb thermochronology, Schmitz

and Bowring (2003a) determined cooling histories of rutile

from lower-crustal xenoliths in the Kaapvaal craton. These

data were used to calibrate the relaxation of cratonic geotherms

following mid-Proterozoic thermal perturbation and subse-

quent Mesozoic lithospheric heating coincident with kimber-

lite eruption. Blackburn et al. (2011) conducted a similar study

on kimberlite-borne lower crustal xenoliths from the Rocky

Mountain region, USA. Using rutile U–Pb dates from three

xenoliths, each representing different crustal depths, they

employed a finite difference diffusion model to show that sys-

tematic discordance spanning>1 Ga is inconsistent with Pb loss

from reheating events. Instead, they fit T–t paths to the rutile

data to illustrate that	0.1 �C My�1 cooling in the lower crust is

required and that the results fit the analytical solution for

diffusive Pb loss derived by Tilton (1960, Figure 18(c)).

A subsequent contribution coupled these and other U–Pb ther-

mochronometric data to model extremely long-term cratonic

exhumation rates of <2 mMy�1 (Blackburn et al., 2012a).

Though U–Pb thermochronology is a powerful and under-

utilized tool for understanding the long-term thermal history

of continents, as outlined in Section 4.10.6.2, the minerals

titanite, apatite, and rutile can be involved in numerous meta-

morphic reactions, complicating their interpretation in some

rocks. Additionally, there is still debate regarding the closure

temperatures of rutile (Blackburn et al., 2012b; Cherniak and

Watson, 2000; Schmitz and Bowring, 2003a; Vry and Baker,

2006), and examples of retention of radiogenic Pb in titanite

through granulite grade metamorphic events are confounding

(Kylander-Clark et al., 2008; Tucker et al., 1986).

4.10.6.5 Calibrating the Archean

There is general consensus that Earth’s heat budget was higher

in the Archean and that there must have been some transi-

tional period with regard to tectonic processes following

Earth’s accretion to the relatively well-understood modern sys-

tem. Our understanding of tectonic and magmatic processes in

the Archean is hampered in part because the precision of

geochronology in such old rocks is limited. In order to make

robust comparisons with potential modern-day analogues for

Archean terranes, it is necessary to produce time constraints

relevant to the pace of plate tectonics.
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The test of open-system behavior that is afforded by the

dual decay of 235U to 207Pb and 238U to 206Pb is highly bene-

ficial in Archean rocks because Pb loss results in a spread of

data that falls far from the concordia curve. Pb loss in Archean

zircons is ubiquitous, and because it is common for these

minerals to also record complex polymetamorphic growth

histories, single whole-grain analysis by TIMS has traditionally

been difficult. Isolating the timing of multiple growth events is

best done through textural imaging in grain mount or thin

section, followed by U–Pb dating by SIMS or LA-ICPMS, but

these analytical techniques are limited to a few percent preci-

sion. When coupled with Pb loss that may be masked by low

precision, untangling the sequence of events during a single

orogenic episode in the Archean is rarely possible.

The chemical-abrasion method (CA-TIMS; Mattinson,

2005; Section 4.10.5.5) has vastly improved our ability to

resolve Pb loss by ID-TIMS in otherwise terminally discordant

zircons. Leaching old radiation-damaged grains in HF fre-

quently removes >90% of the original zircon, leaving <5 mm
fragments of low-U zircon (Schoene and Bowring, 2007, 2010;

Schoene et al., 2008). Analytical precision of U–Pb dates on

such low-U (and therefore low-Pb) residues is, on average,

0.1–0.2%, compared to <0.1% precision of younger, higher-

U zircon with greater intensity Pb ion beams. This level of

precision is not ideal for age determination, but is adequate

to resolve concordance in single grains. Establishing concor-

dance for individual analyses permits use of the 207Pb/206Pb

date with confidence in its accuracy, and this is by far the most

precise date available for Archean rocks (Mattinson, 1987).

Relatively high amounts of 206Pb* and 207Pb* in old zircons,

along with modern sub-picogram Pb blanks, allows for preci-

sion in 207Pb/206Pb dates as low as 0.01% for weighted means

of less than five analyses. Therefore, when analyzing zircons

with relatively simple growth histories (i.e., single-stage

growth), CA-TIMS analysis has the potential to resolve Archean

events within 1 Ma of each other – essential when addressing

typical, short-duration tectonic episodes or magmatic events.

Application of CA-TIMS with <1 Ma resolution, combined

with field mapping and geochemistry, has resolved timescales

of batholith construction through pulses of tonalitic to grano-

dioritic magma during synmagmatic contraction �3.2 Ga in

the eastern Kaapvaal craton (Schoene and Bowring, 2010;

Schoene et al., 2008; Figure 19). Furthermore, high-precision

geochronology coupled with geochemistry provides ameans of

time-series analysis of Archean magmatic events that can be

used to evaluate the geochemical evolution of the magmatic
function of time during relaxation from a hot geotherm to a cold
geotherm over 2 Ga. Limits of colored envelopes encompass the PRZ for
10–50 mm grains using diffusion kinetics cited in the text. (c) Actual rutile
U–Pb data from middle to lower crustal xenoliths from Blackburn et al.
(2011) compared to the results of a numerical diffusion model. Black and
white symbols are measured data from samples originating from various
crustal depths, and colored circles show the range of closure times for
10–50 mm grains from variable crustal depth for a conductively relaxing
geotherm given no surface erosion (Blackburn et al., 2011, 2012a,b).
Note the good agreement between measured rutile dates and modeled
dates, which preclude significant reheating as a source of discordance of
the real data. All uncertainties are 2s.
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system, which is critical for evaluating the tectonic process.

Comparison of these data to the tempo of batholith construc-

tion observed in Mesozoic and Cenozoic arcs reveals a striking

similarity (Figure 19). Further detailed analysis of the geo-

chemical and structural evolution of Archean magmatic sys-

tems with high temporal resolution will provide a means to

further test hypotheses regarding plate-tectonic versus plume-

related lithospheric evolution through Earth history.
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Schmitt AK, Danišı́k M, Evans NJ, et al. (2011) Acigöl rhyolite field, Central Anatolia
(part 1): High-resolution dating of eruption episodes and zircon growth rates.
Contributions to Mineralogy and Petrology 162: 1215–1231.

Schmitt AK, Stockli DF, Lindsay JM, Robertson R, Lovera OM, and Kislitsyn R (2010)
Episodic growth and homogenization of plutonic roots in arc volcanoes from
combined U–Th and (U–Th)/He zircon dating. Earth and Planetary Science Letters
295: 91–103.

Schmitz MD and Bowring SA (2001) U–Pb zircon and titanite sytematics of the Fish
Canyon Tuff: An assessment of high-precision U–Pb geochronology and its

http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1245
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1245
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1245
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1245
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1245
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1245
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1250
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1250
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1255
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1255
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1255
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1255
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1260
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1260
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1260
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1260
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1265
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1265
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1270
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1270
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1275
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1275
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1275
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1280
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1280
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1280
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1280
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1285
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1285
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1285
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1290
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1290
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1290
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1295
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1295
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf9025
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf9025
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1300
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1300
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1300
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1305
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1305
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1305
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1310
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1310
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1315
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1315
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1315
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1320
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1320
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1320
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1325
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1325
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1325
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1330
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1330
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1335
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1335
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1340
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1340
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1340
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1345
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1345
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1345
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1345
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1350
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1350
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1355
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1355
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1360
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1360
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1360
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1365
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1365
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1365
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1370
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1370
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1370
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1370
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1375
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1375
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1380
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1385
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1385
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1385
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1385
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1385
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1390
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1390
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1390
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1390
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1395
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1395
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1395
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1400
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1400
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1400
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1405
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1405
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1405
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1410
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1410
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1415
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1415
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1415
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1420
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1420
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1420
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1425
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1425
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1430
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1430
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1430
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1435
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1440
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1440
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1440
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1440
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1445
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1445
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1445
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1445
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1445
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1450
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1450
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1450
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1450
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1455
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1455
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1455
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1460
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1460
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1460
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1460
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1465
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1465
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1465
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1470
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1470
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1475
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1475
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1475
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1475
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1480
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1480
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1480
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1485
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1485
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1485
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1485
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1490
http://refhub.elsevier.com/B978-0-08-095975-7.00310-7/rf1490


U–Th–Pb Geochronology 377
application to young volcanic rocks. Geochimica et Cosmochimica Acta
65: 2571–2587.

Schmitz MD and Bowring SA (2003a) Constraints on the thermal evolution of
continental lithosphere from U–Pb accessory mineral thermochronometry of lower
crustal xenoliths, southern Africa. Contributions to Mineralogy and Petrology
144: 592–618.

Schmitz MD and Bowring SA (2003b) Ultrahigh-temperature metamorphism in the
lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal
Craton, southern Africa. Geological Society of America Bulletin 115: 533–548.

Schmitz MD and Bowring SA (2004) Lower crustal granulite formation during
Mesoproterozoic Namaqua-Natal collisional orogenesis, southern Africa. South
African Journal of Geology 107: 261–284.

Schmitz MD and Davydov VI (2012) Quantitative radiometric and biostratigraphic
calibration of the Pennsylvanian–Early Permian (Cisuralian) time scale and
pan-Euramerican chronostratigraphic correlation. Geological Society of America
Bulletin 124: 549–577.

Schmitz MD and Schoene B (2007) Derivation of isotope ratios, errors, and error
correlations for U–Pb geochronology using 205Pb–235U-(233U)-spiked isotope
dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics,
Geosystems 8: Q08006.

Schoene B and Bowring SA (2006) U–Pb systematics of the McClure Mountain syenite:
Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb.
Contributions to Mineralogy and Petrology 151: 615–630.

Schoene B and Bowring SA (2007) Determining accurate temperature–time paths in
U–Pb thermochronology: An example from the SE Kaapvaal craton, southern Africa.
Geochimica et Cosmochimica Acta 71: 165–185.

Schoene B and Bowring SA (2010) Rates and mechanisms of Mesoarchean magmatic
arc construction, eastern Kaapvaal craton, Swaziland. Geological Society of America
Bulletin 122: 408–429.

Schoene B, Crowley JL, Condon DC, Schmitz MD, and Bowring SA (2006) Reassessing
the uranium decay constants for geochronology using ID-TIMS U–Pb data.
Geochimica et Cosmochimica Acta 70: 426–445.

Schoene B, de Wit MJ, and Bowring SA (2008) Mesoarochean assembly
and stabilization of the eastern Kaapvaal craton: A structural–thermochronological
perspective. Tectonics 27: TC5010.

Schoene B, Guex J, Bartolini A, Schaltegger U, and Blackburn TJ (2010a) Correlating
the end-Triassic mass extinction and flood basalt volcanism at the 100,000-year
level. Geology 38: 387–390.

Schoene B, Latkoczy C, Schaltegger U, and Günther D (2010b) A new method
integrating high-precision U–Pb geochronology with zircon trace element analysis
(U–Pb TIMS-TEA). Geochimica et Cosmochimica Acta 74: 7144–7159.

Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A, and Günther D (2012) Rates
of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb
TIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters
355–356: 162–173.

Searle MP, Noble SR, Cottle JM, et al. (2007) Tectonic evolution of the Mogok
metamorphic belt, Burma (Myanmar) constrained by U–Th–Pb dating of
metamorphic and magmatic rocks. Tectonics 26: TC3014.

Selby D, Creaser RA, Stein HJ, Markey RJ, and Hannah JL (2007) Assessment of the
187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon
chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta
71: 1999–2013.

Shaw CA, Heizler M, and Karlstrom KE (2004) 40Ar/39Ar thermochronologic record of
1.45–1.35 Ga intracontinental tectonism in the southern Rocky Mountains: Interplay
of conductive and advective heating with intracontinental deformation.
In: Karlstrom KE and Keller GR (eds.) The Rocky Mountain Region: An Evolving
Lithosphere. Geophysical Monograph Series, vol. 154, pp. 163–184. Washington,
DC: American Geophysical Union.

Shen S-Z, Crowley JL, Wang Y, et al. (2011) Calibrating the end-Permian mass
extinction. Science 334: 1367–1372.
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